Чтение онлайн

на главную

Жанры

Maple 9.5/10 в математике, физике и образовании

Дьяконов Владимир Павлович

Шрифт:

> irreduc(х^2-1);

false

> irreduc(х^2-2);

true

> Irreduc(2*x^2+6*x+6) mod 7;

false

> Irreduc(x^4+x+1) mod 2;

true

> alias(alpha=RootOf(x^4+x+1)):

> Irreduc(х^4+х+1,alpha) mod 2;

false

5.3.6. Разложение полинома по степеням

Для

разложения полинома р по степеням служат инертные функции AFactor(p) и AFactors(p). Полином может быть представлен в виде зависимости от одной или нескольких переменных.

Функция Afactor(p) выполняет полную факторизацию (разложение) полинома p от нескольких переменных с коэффициентами в виде алгебраических чисел над полем комплексных чисел. При этом справедливо отношение evala(AFactor(p))= factor(p.complex). Таким образом, эта функция является, по существу, избыточной.

В случае одномерного полинома полное разложение на множители является разложением на линейные множители. Функция AFactors аналогична функции Afactor, но создает структуру данных формы [u,[[f[1],e[1]],…,[f[n],e[n]]]] так, что p=u*f[1]^e[1]*…*f[n]^e[n], где каждый f[i] — неприводимый полином.

Ниже даны примеры применения функции Afactor:

> evala(AFactor(2*х^2+4*х-6));

2(x+3)(х-1)

> evala(AFactor(х^2+2*у^2));

(х - RootOf(_Z² + 2)y) (x + RootOf(_Z² + 2)y)

> expand((x-1) * (x-2) * (x-3) * (x-4));

x4– 10 x3 + 35 x2– 50 x + 24

> AFactor(%);

AFactor(x4– 10 x3 + 35 x2 50 x + 24)

> evala(%);

(x-1)(x-2)(x-3)(x-4)

> expand((x-1+I*2)*(x+1-I*2)*(x-3));

x³ - 3x² + 3x - 9 + 4 I x-12 I

> evala(AFactor(%));

(x - 3)(x² + 3 + 4I)

> evala(AFactors(х^2-2*у^2));

[1, [[x - RootOf(_Z² - 2)y, 1], [x + RootOf(_Z² + 2)y, 1]]]

Нетрудно заметить, что разложение полинома на множители позволяет оценить наличие у него корней. Однако для этого удобнее воспользоваться специальными функциями, рассмотренными ниже.

5.3.7. Вычисление корней полинома

Для вычисления действительных и комплексных корней полиномов служит уже известная нам функции solve(p, x), возвращающая список корней полинома p одной переменной. Кроме того, имеются следующие функции для вычисления корней полиномов:

roots(р)

roots(р, K)

roots(р, х)

roots(р, x, K)

Эти функции вычисляют точные корни в рациональной или алгебраической области чисел. Корни возвращаются в виде [[r1,m1], [rn, mn]], где mi — это корень полинома, a mi — порядковый номер полинома. С действиями этих функций можно разобраться с помощью приведенных ниже примеров:

> р:=х^4 1-9*х^3+31*х^2+59*х+60;

р:=х4 + 9х3 + 31х2 + 59
х + 60

> solve(р,х);

– 3, -4, -1 + 2I, -1-2I

> roots(р,х);

[[-4, 1], [-3, 1]]

> roots(х^2-4,х);

[[2, 1], [-2, 1]]

> expend((х-1)*(х-2)*(х-3)*(х-4));

х4– 10х3 +35х2– 50 х + 24

> roots(%,х);

[[1, 1], [2, 1], [3, 1], [4, 1]]

5.3.8. Основные операции с полиномами

С полиномами могут выполняться различные операции. Прежде всего, отметим некоторые функции, которые относятся к одному полиному:

psqrt(p) — возвращает квадрат полинома;

proot(p,n) — возвращает n-ю степень полинома;

realroot(p) — возвращает интервал, в котором находятся действительные корни полинома;

randpoly(vars, eqns) — возвращает случайный полином по переменным vars (список) с максимальной степенью eqns;

discrim(p, var) — вычисление дискриминанта полинома по переменной var;

Primitive(a) mod p — проверка полинома на примитивность (возвращает true, если полином примитивен).

Действие этих функций достаточно очевидно, поэтому ограничимся приведением примеров их использования (файл polop):

> psqrt(х^2+2*х*у+у^2);

у + x

> proot(х^3+3*х^2+3*х+1, 3);

x+1

> psqrt(x+y);

_NOSQRT

> proot(x+y, 2);

_ NOROOT

> р:=х^3-3*х^2+5*х-10;

p:=x³ - 3x² + 5x - 10

> discrim(p,x);

– 1355

> readlib(realroot):

> realroot(p);

[[0, 4]]

> randpoly([x],degree=10);

63x10 + 57x8– 59x5 + 45x4– 8x3– 93

> randpoly([x],degree=10);

– 5x9 + 99x8– 61x6– 50x5– 12x3– 18x

> randpoly([x],degree=10);

41x9– 58x8– 90x7 + 53x6– x4 + 94x

> Primitive(х^4+х+1) mod 2;

true

Обратите внимание на то, что для использования некоторых из приведенных функций необходим вызов их из стандартной библиотеки. Для функции randpoly приведенные результаты случайны, так что, скорее всего, их повторение невозможно.

Поделиться:
Популярные книги

Черный Маг Императора 13

Герда Александр
13. Черный маг императора
Фантастика:
попаданцы
аниме
сказочная фантастика
фэнтези
5.00
рейтинг книги
Черный Маг Императора 13

Последняя Арена 4

Греков Сергей
4. Последняя Арена
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Последняя Арена 4

Маяк надежды

Кас Маркус
5. Артефактор
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Маяк надежды

Великий перелом

Ланцов Михаил Алексеевич
2. Фрунзе
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Великий перелом

Сопротивляйся мне

Вечная Ольга
3. Порочная власть
Любовные романы:
современные любовные романы
эро литература
6.00
рейтинг книги
Сопротивляйся мне

Инквизитор Тьмы 2

Шмаков Алексей Семенович
2. Инквизитор Тьмы
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Инквизитор Тьмы 2

Мастер Разума V

Кронос Александр
5. Мастер Разума
Фантастика:
городское фэнтези
попаданцы
5.00
рейтинг книги
Мастер Разума V

Бандит 2

Щепетнов Евгений Владимирович
2. Петр Синельников
Фантастика:
боевая фантастика
5.73
рейтинг книги
Бандит 2

Истребители. Трилогия

Поселягин Владимир Геннадьевич
Фантастика:
альтернативная история
7.30
рейтинг книги
Истребители. Трилогия

Гардемарин Ее Величества. Инкарнация

Уленгов Юрий
1. Гардемарин ее величества
Фантастика:
городское фэнтези
попаданцы
альтернативная история
аниме
фантастика: прочее
5.00
рейтинг книги
Гардемарин Ее Величества. Инкарнация

Падение Твердыни

Распопов Дмитрий Викторович
6. Венецианский купец
Фантастика:
попаданцы
альтернативная история
5.33
рейтинг книги
Падение Твердыни

"Дальние горизонты. Дух". Компиляция. Книги 1-25

Усманов Хайдарали
Собрание сочинений
Фантастика:
фэнтези
боевая фантастика
попаданцы
5.00
рейтинг книги
Дальние горизонты. Дух. Компиляция. Книги 1-25

Ох уж этот Мин Джин Хо 2

Кронос Александр
2. Мин Джин Хо
Фантастика:
попаданцы
5.00
рейтинг книги
Ох уж этот Мин Джин Хо 2

Энфис 6

Кронос Александр
6. Эрра
Фантастика:
героическая фантастика
рпг
аниме
5.00
рейтинг книги
Энфис 6