Машинное обучение на практике – от модели PyTorch до Kubeflow в облаке для BigData
Шрифт:
В курсах по AI доля Machine Learning составляет 42%.
Если же говорить об рабочих местах и о смещении на технологические рабочие места. Часто, компании, которые автоматизируют рабочие места, заявляют, что сотрудники которые их занимали могут переквалифицироваться и начать управлять этими автоматизированными системами. Обычно, люди со стороны относятся к этому с недоверием, так как непонятно, зачем автоматизировать и потом оставляют тоже количество людей, ведь автоматизация подразумевает в их понятие автономность. Но, это не так, так как автоматизация подразумевает наличие огромного количества людей, разрабатывающих и обслуживающих эти системы. Так, в одной из крупнейших компаний России есть план, который подразумевает освобождение нескольких тысяч мест продавцов, кассиров и других операторов, но вместе с тем запланирован найм большего количества тысяч рабочих мест специалистов обслуживающих системы AI. Ожидается качественный и масштабируемый прирост показателей услуг, предоставляемых компанией, а большей степени отрытие новых ниш развития компании. Количество в среднем останется таким же, так как большой набор проектный (единичный), а отток – плановый (ежегодный). Но, конечно, продавцы и кассиры маловероятно, что переквалифицируются в разработчиков, аналитиков и учёных с сфере ИИ. Хотя, большими компаниями делаются попытки в этом направлении – создаются курсы и очное обучение на несколько месяцев для переквалификации сотрудников. Обычно, люди с умирающих профессий переквалифицируются в другие умирающие профессии, у которых умирание произойдёт с небольшим запозданием. Это связано с тем, что люди бегут с простых работ на работы чуть сложнее, чем были до этого, ожидая быструю и разовую переквалификацию. Например, продавцы могут переквалифицироваться
Что, касается самой профессии Data scines – это аналитик данных, который на основе понимания предметной области может с помощью статистических методов используя инструменты (языки, системы) получить предсказания. Более подробно о навыках:
* математическая статистика и теория вероятностей, чтобы мог выбрать статистические методы, где ML не нужен;
* алгоритмы ML: регрессия, классификация, кластеризация, порождения (генерации), сопоставление;
* программирование: аналитика на R, написание моделей на Python и подключение данных из Java+SQL (Hadoop, Hive, Spark, Pig), управление жизненным циклом модели (DevOps, SRE);
* мягки навыки: понимание предметной области (ориентация на бизнес результат), проектное управление (коммуникация для построения запуска модели), аналитика для проверки гипотез.
Пишем свою сеть
Для примера возьмём прописные числа от нуля до девяти, которые мы будет сопоставлять с печатными. Если прописные точно попадают в контур – то всё просто, нам нужно просто перебрать контура печатных и получить подходящий вариант. Такая задача не относится к задачам машинного обучения. Теперь усложним задачу – числа у нас не точно попадают под шаблон. Если прописные числа немного не вписываются в контур – мы просто находим какое–то отклонение. И тут возникает сложность при категоризации прописного числа на ноль и девятку, когда размер хвостика отделяет небрежное написание нуля от девятки. Другой момент в категоризации восьмёрки и девятки. Так, если кончик отгибается – это десятка, а если загибается и прикасается – то восьмёрка. Для решения подобной ситуации нужно разделить цифру на области и в зависимости и присвоить им разные коэффициенты. Так, соединение хвостика нижней части имеет очень высокое значение, нежели форма самих окружностей в классификации на восьмёрки и девятки. Определить помогут статистические данные по заранее данной выборке соответствия фигур восьмёркам и девяткам, где исследователь сможет определить, когда уже можно высчитать нижнее кольцо замкнутым и говорить о соответствии восьмёрке фигуры, а когда нет, говорить о соответствии девятке. Такой метод сортировки, основанный на выделении отдельных компонент, на различии которых и принимается решение о сортировке, называется методом главных компонент. Но мы можем программным способом разделить цифры на сектора и присвоить им коэффициенты.
Другой сложностью может быть то, что цифра может быть не в наблюдаемой области, а в произвольной, например, в углу. Для анализа самой цифры нам нужно переместить анализирующее окно в то место, где находится цифра. Для простоты пока будем полагать, что габариты анализирующего окна равны габаритам исследуемой цифры. Для решения этой задачи перед сетью ставят анализирующий слой, образующий карту нахождения цифры. Задача этого слоя определить местоположение цифры на картинке. Для простоты возьмём чёрное изображение на белом листе. Нам нужно пройтись анализатором цифры построчно по всему листку и определить местоположение. В качестве индикатора возьмём площадь чёрного цвета на индикаторе. После прохождения по листку бумаги и определения площади мы получим матрицу с цифрами площадей чёрного цвета. Где площадей чёрного цвета больше – в том месте цифра максимально вписалась в индикатор. Преобразование картинки в матрицу площадей называется операцией свёртки, а если это выполняет нейронный слой – свёрточный слой. Принцип работы был позаимствован у биологического зрительного нерва. Нейронные сети, в которых присутствует свёрточный слой (Conv Layers) называются свёрточными нейронными сетями (Convolutional Neural Network, CNN). Такие сети используют при распознавании изображения, а после при должном развитии их адаптировали для распознавания речи и текстов. Классически, CNN применяется для решения трёх задач при работе с изображениями:
* классификация изображений, например, фотографий собак и кошек по роду животных; * определение объекта на изображении, например, определение нахождения и положения пешехода при пилотировании беспилотным автомобилем; * сегментации изображения, например, определение на рентгенах контуров опухолей.
Если изображение находится в произвольном месте, или имеются другие изображения, то для определения потребуется несколько слоёв нейронной сети, и результатом будет являться также карта расположения цифры, но принятие решения о её нахождения нужно её идентифицировать. Таким образом, первый слой будет иметь количество нейронов отображающих карты, что по горизонтали и вертикали будет соответствовать ширине и высоте листка минус соответствующую ширину и высоту анализирующего экрана, делённую на шаг сдвига анализирующего окна. Размерность второго же слоя в нейронах равна размерности анализируемого окна, чтобы иметь возможность идентификации цифры. Если мы проведём связи от всех нейронов слоя поиска к слою анализирующего окна, то на выходе мы получим набор снимков влитых вместе. Следующий слой будет иметь размерность, равную количеству анализируемых элементов цифр. К примеру, цифру можно представить в виде не полностью закрашенной восьмёрки, тогда, закрашиваемых сегментов будет семь. Все нейроны свёрточного слоя будут связаны со всеми нейронами слоя анализа сегментов цифры. Задача нейрона этого слоя быть связанным с нейронами предыдущего, ответственными за данный сегмент и выдать результат наличия или отсутствия данного сегмента в цифре. Следующий слой имеет состоит из десяти нейронов, соответствующие цифрам от нуля до девяти. Всего его нейроны связаны с предыдущим слоем и активируются при получении сигналов от них. Так, нейрон, ответвленный за цифру один будет активироваться, если получит информацию, что два крайних правых сектора будут активны и не активны все остальные. Описанный алгоритм детектирования искомого изображения называется R–CNN (Region–based Convolutional Network) и использовался долгое время. Далее он был сменён Fast R–CNN, а ныне применяется YOLO (Real–Time Object Detection) из–за большего качества и скорости работы.
На выходе мы получим активацию того выходного нейрона, который соответствует определённой цифре. Он это делает на основе данных, получаемых от нейронов с предыдущего слоя, ответственных за сектора цифры, а именно от каких нейронов пришли сигналы, а от каких нет. Обозначим приходящие сигналы от нейронов по связям за ноль, то есть сектор не закрашен, а единице будет соответствовать случай, когда сектор закрашен. Тогда, вес у связей от правых секторов – положительный, что даст единицу, а у остальных – отрицательный, что не даст получить на выходе единицу если ещё
При обучении нейрона с учителем мы подаём обучающие сигналы и получаем на выходе результаты. Но при каждом сигнале, входном и выходном, мы получаем результат о степени ошибки в предсказании. Когда мы прошли все обучающие сигналы, мы получили набор (вектор) ошибок, который может быть представлен в виде функции ошибок. Эта функция ошибок зависит от входных параметров (весов) и нам нужно найти веса, при которых эта функция ошибок становится минимальной. Для определения этих весов применяется алгоритм Градиентного спуска, суть которого заключается в постепенном движении к локальному минимуму, а направление движения определяется производной от этой функции и функции активации. В качестве функции активации обычно выбирают сигмойду для обычных сетей или усечённую ReLU для глубоких сетей. Сигмойда на выходе даёт диапазон от нуля до единицы всегда. Усечённая ReLU всё же позволяет при очень больших числах (очень важной информации) на входе передать больше единицы на выход, и тем самым повлиять на слои, идущие после непосредственно следующих. К примеру, точка над чёрточкой отделяет букву L от буквы i, а информация одного пикселя влияет на принятия решения на выходе, поэтому важно не потерять этот признак и передать его на последний уровень. Разновидностей функций активации не так много – их ограничивает требование к простоте обучения, когда требуется взять производную. Так сигмойда f после произвольно превращается в f(1–f), что эффективно. С Leaky ReLu (усечённая ReLu c утечкой) ещё проще, так как она при "x < 0" принимает значение 0, то её проводная на этом участке тоже равна 0, а при "x >=0" она принимает 0,01*x, что при производной будет 0,01, а при x > 1 принимает 1+0,01*x, что для производной даёт 0,01. Вычисление тут вообще не требуется, поэтому обучение происходит намного быстрее, обычно, в пять раз. До сигмойды ещё использовался тангенс, но, он был вытеснен сигмойдой.
Так как на вход функции активации мы подаём сумму произведений сигналов на их веса, то зачастую, нам нужен другой пороговый уровень, отличный от 0,5. Мы можем сместить его на константу, прибавляя её к сумме на входе в функцию активации, используя нейрон смещения для её запоминания. Он не имеет входов и выдаёт всегда единицу, а само смещение задаётся весом связи с ним. Но, для многонейронных сетей он не требуется, так как сами веса предыдущим слоями подгоняются такого размера (меньшими или отрицательными), чтобы использовать стандартный пороговый уровень – это даёт стандартизацию, но требует большего количества нейронов.
При обучении нейрона нам известна ошибка самой сети, то есть на входных нейронах. На их основе можно рассчитать ошибку в предыдущем слое и так далее до входных – что носит название метода обратного распространения ошибки.
Сам же процесс обучения можно разделить на этапы: инициализация, само обучение и предсказание.
Если же у нас цифра может быть различного размера, то применяется pooling слои, которые масштабируют изображение в меньшую сторону. По какому алгоритму будет вычисляться то, что будет записано при объединении, зависит от алгоритма, обычно это функция “max” для алгоритма «max pooling» или «avg» (среднеквадратичные значение соседних ячеек матрицы) – average pooling.
У нас уже появилось несколько слоёв. Но в применяемых на практике нейронных сетях их может быть очень много. Сети с количеством слоёв больше четырёх слоёв принято называть глубокими нейронными сетями (DML, Deep ML). Их может быть очень много, что приводит к сложности. С улучшением архитектур, позволяющих уменьшить или обойти такие ограничения, появляются сети с сотнями слоёв. Например, блоки Residual Connect, позволяющие сохранить градиенты и ставшие стандартом для глубоких сетей, появились впервые в ResNet с количеством слоёв 152 штуки и это далеко не самая глубокая сеть. Но, как вы уже заметили, количество слоёв не берётся, по принципу, чем больше, тем лучше, а прототипируется. Излишнее количество ухудшает качество за счёт затухания, если для этого не применять определённые решения, такие как проброс данных с последующим суммированием. Примерами архитектур нейронных сетей могут быть ResNeXt, SENet, DenseNet, Inception–Res Net–V2, Inception–V4, Xception, NASNet, MobileNet V2, Shuffle Net и Squeeze Net. Большинство из этих сетей предназначены для анализа изображений и именно изображения, зачастую, содержат наибольшее количество деталей, и на эти сети возлагается наибольшее количество операций, чем и обуславливается их глубина. Одну из подобных архитектур мы рассмотрим при создании сети классификации цифр – LeNet–5, созданную в 1998.