Чтение онлайн

на главную

Жанры

Математические головоломки и развлечения

Гарднер Мартин

Шрифт:

Многие двумерные головоломки также можно решать с помощью аналогичных «проверок на четность». Например, так можно доказать, что ладья не может перейти из одного угла шахматной доски в противоположный угол (по диагонали), побывав по одному разу на всех 64 клетках.

Глава 46. ПОЛИМИНО И «ПРОЧНЫЕ» ПРЯМОУГОЛЬНИКИ

В главе 12 уже говорилось о полимино и его создателе С. Голомбе. После опубликования статьи о полимино на страницах журнала Scientific American A957) игра стала необыкновенно популярным математическим развлечением. Обнаружились сотни новых задач и причудливых конфигураций полимино. О них и пойдет здесь речь.

Напомним, что фигуры, которыми на шахматной доске можно покрыть

пять соседних клеток, образующих связную область, носят название пентамино. Существует двенадцать таких фигур. Если эти фигуры расположить так, как показано на рис. 234, то становится видно, что каждая фигура по форме напоминает какую-нибудь латинскую букву, поэтому для запоминания формы и названия фигур (каждую фигуру мы будем называть какой-нибудь буквой) достаточно знать конец латинского алфавита (Т, U, V, W, X, Y, Z) и слово FiLiPiNo.

Рис. 234

В главе 12 (см. рис. 71) было показано, что из двенадцати элементов пентамино общей площадью в 60 квадратиков можно сложить прямоугольники четырех размеров: 3х20, 4х15, 5х12 и 6х10. Те же 12 фигур можно уложить на шахматной доске размером 8x8, причем квадрат из четырех лишних клеток (площадь доски равна 64 квадратикам) может находиться в любом месте доски.

Любой элемент пентамино можно утроить с помощью каких-нибудь девяти фигур из числа оставшихся (подразумевается, что из этих девяти пентамино будет сложена фигура, подобная выбранной, но в три раза выше и длиннее). Из двенадцати пентамино можно еще построить два прямоугольника 5x6. Последняя задача носит название задачи на суперпозицию, потому что построенные фигуры можно наложить друг на друга. Голомб сообщил мне пять новых задач на суперпозицию, которые впервые публикуются в этой книге. Если читатель до сих пор не понял всей прелести пентамино, ему необходимо вырезать из картона набор элементов пентамино и поломать голову над некоторыми из приведенных ниже задач.

Во всех головоломках элементы пентамино можно класть на плоскость любой стороной.

1. Разбейте двенадцать пентамино на три группы по четыре элемента в каждой. Затем найдите фигуру площадью в 20 квадратиков, которую можно сложить из элементов каждой группы. Одно из возможных решений изображено на рис. 235.

Рис. 235

2. Разбейте двенадцать пентамино на три группы по четыре элемента. Каждую группу разделите пополам и найдите такую фигуру (для каждой группы свою), имеющую площадь в 10 квадратиков, которую можно сложить из обеих пар элементов в отдельности.

Одно из решений показано на рис. 236. Можете ли вы придумать другие решения, чтобы хотя бы в одном из них фигуры не имели отверстий?

Рис. 236

3. Разбейте двенадцать пентамино на три группы по четыре элемента. К каждой группе добавьте мономино (один квадратик) и постройте прямоугольник размером 3x7. Как это сделать, показано на рис. 237.

Рис. 237

Решение единственно с одной лишь оговоркой: в первом прямоугольнике

мономино и элемент Y пентамино можно переворачивать, не меняя общей формы и площади составленной из них односвязной фигуры.

Доказать единственность решения можно следующим образом.

Прежде всего заметим, что на рис. 238 элемент X должен обязательно использоваться в паре с элементом U. Ни элемент F, ни элемент W не годятся для того, чтобы завершить построение прямоугольника.

Рис. 238

Если элемент X дополнить элементом U, то в том же самом прямоугольнике 3x7 уже нельзя будет использовать элементы F и W. Следовательно, из трех прямоугольников размером 3 х 7 в одном будут использованы элементы X и U, второй будет содержать элемент W (но не U), а третий — элемент F (но не U). Если теперь перебрать все возможные варианты прямоугольников и сравнить их (это отнимет у вас достаточно много времени), то окажется, что предполагаемое решение (см. рис. 237) единственно.

4. Разбейте двенадцать пентамино на четыре группы по три элемента в каждой. Найдите такой многоугольник площадью в 15 квадратов, который можно сложить из трех элементов каждой группы.

Решение этой головоломки неизвестно; с другой стороны, никто до сих пор не доказал, что задача неразрешима.

5. Найдите на шахматной доске область минимального размера, на которой умещается любой из двенадцати элементов пентамино.

Минимальная площадь такой области равна девяти квадратам, и известно всего две ее формы (рис. 239).

Рис. 239

Каждая фигура рис. 239 удовлетворяет поставленным условиям; для доказательства достаточно заметить, что на ней умещается любой элемент пентамино. Доказательство того, что число квадратов не может быть меньше девяти, проводится следующим образом.

Если бы годилась фигура, содержащая меньше девяти квадратов, то элементами I, X и V можно было бы закрыть не более восьми квадратов. При этом у элементов I и X было бы три общих квадрата. (В противном случае либо потребовалось бы девять квадратов, либо, что было бы излишней роскошью, самая длинная прямая состояла бы из шести квадратов.) Этого можно достичь всего лишь двумя разными способами (рис. 240), но в том и в другом случае нужен еще и девятый квадрат, чтобы уместить элемент U.

Рис. 240

Таким образом, восьми квадратов не хватает, в то время как из приведенных примеров видно, что девяти квадратов достаточно.

С появлением компьютеров задачи с пентамино начали исследовать на них. В главе 12 уже упоминалось о том, как Дана Скотт с помощью компьютера нашла все способы составления из двенадцати элементов пентамино шахматной доски размером 8х8 с квадратным отверстием в четыре клетки в центре. Было найдено 65 принципиально различных решений (два решения, получающиеся одно из другого поворотом или отражением, считаются одинаковыми). К. Б. Хейселгроув, математик из Манчестерского университета, перечислил с помощью компьютера все возможные варианты прямоугольника размером 6х10, сложенного из двенадцати пентамино. Он нашел 2389 различных решений, не считая тех, которые получаются друг из друга поворотами и отражениями! Кроме того, он проверил программу, составленную Даной Скотт для шахматной доски 8x8.

Поделиться:
Популярные книги

Огни Аль-Тура. Единственная

Макушева Магда
5. Эйнар
Любовные романы:
любовно-фантастические романы
эро литература
5.00
рейтинг книги
Огни Аль-Тура. Единственная

Идеальный мир для Лекаря 13

Сапфир Олег
13. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 13

Всплеск в тишине

Распопов Дмитрий Викторович
5. Венецианский купец
Фантастика:
попаданцы
альтернативная история
5.33
рейтинг книги
Всплеск в тишине

Сердце Дракона. Том 11

Клеванский Кирилл Сергеевич
11. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
6.50
рейтинг книги
Сердце Дракона. Том 11

АН (цикл 11 книг)

Тарс Элиан
Аномальный наследник
Фантастика:
фэнтези
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
АН (цикл 11 книг)

Совпадений нет

Безрукова Елена
Любовные романы:
любовно-фантастические романы
5.50
рейтинг книги
Совпадений нет

Физрук 2: назад в СССР

Гуров Валерий Александрович
2. Физрук
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Физрук 2: назад в СССР

Возвращение Низвергнутого

Михайлов Дем Алексеевич
5. Изгой
Фантастика:
фэнтези
9.40
рейтинг книги
Возвращение Низвергнутого

6 Секретов мисс Недотроги

Суббота Светлана
2. Мисс Недотрога
Любовные романы:
любовно-фантастические романы
эро литература
7.34
рейтинг книги
6 Секретов мисс Недотроги

Восход. Солнцев. Книга X

Скабер Артемий
10. Голос Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Восход. Солнцев. Книга X

Приручитель женщин-монстров. Том 7

Дорничев Дмитрий
7. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 7

Ваше Сиятельство 2

Моури Эрли
2. Ваше Сиятельство
Фантастика:
фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Ваше Сиятельство 2

Темный Лекарь 5

Токсик Саша
5. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 5

Он тебя не любит(?)

Тоцка Тала
Любовные романы:
современные любовные романы
7.46
рейтинг книги
Он тебя не любит(?)