Медитируем стоя
Шрифт:
Майерс пишет [9] , что легко поддаться привычному механистическому представлению о том, что мышца «начинается» здесь, «заканчивается» там, а значит, её функция — сближать эти две точки, словно мышца работает в пустом пространстве. На самом деле существует всего одна мышца — просто она распределена по 600 (или более) футлярам-фасциям.
Мышцы, заключенные фасции и оканчивающие сухожилиями, не являются простым набором отдельных мышц, а плавно переходят друг в друга и образуют достаточно длинные линии натяжения, которые покрывают всё тело единой сетью.
9
Майерс
Эти миофасциальные линии, следуя за переплетениями соединительных тканей, формируют «меридианы» (линии натяжения) вдоль всего тела. Большинство двигательных действий совершается согласно этим линиям.
Вот, например, как описывает Майерс так называемый спиральный меридиан: он «одним витком окручивается вокруг тела, соединяя одну сторону черепа через спину с противоположным плечом, а затем проходит через переднюю часть тела к тому же бедру, колену и своду стопы и поднимается по задней стороне тела, соединяясь с черепом». Здесь мы видим, что ряд миофасций переходят одна в другую, образуя единую линию от черепа до стопы.
В своей книге Майерс описывает одиннадцать миофасциальных линий, которые образуют единую миофасциальную сеть.
С физиологической точки зрения миофасциальная сеть есть одна из трёх (наряду с нервной и сосудистой) целостных систем человеческого организма. Какие бы задачи ни выполняла каждая отдельная мышца, она функционально интегрирована и работает внутри миофасциальной сети.
Тенсегрити-структуры
Термин «тенсегрити» (англ, tensegrity), придуманный учёным, инженером и архитектором Ричардом Фуллером, образован из двух слов: tension — натяжение и integrity — стойкость, прочность. Тенсегрити — это принцип построения конструкций, основанный на использовании элементов, одни из которых работают на сжатие, а другие — на растяжение.
Вот, например, как выглядит тенсегрити-икосаэдр:
Здесь мы видим твёрдые стержни, которые не касаются друг друга: они держатся вместе благодаря нитям, которые стягивают эту конструкцию в направлении «снаружи — внутрь». Сами стержни при этом создают силы натяжения, действующие в направлении «изнутри — наружу». Поэтому тенсегрити-структуры называют также структурами сбалансированного сжатия-натяжения.
Сам Фуллер определяет этот термин так: «Тенсегрити — это способность каркасных конструкций использовать взаимодействия работающих на сжатие цельных элементов с работающими на растяжение составными элементами для того, чтобы каждый элемент действовал с максимальной эффективностью и экономичностью» [10] .
10
Овчинников И.И., Овчинников И.Г., Буреев А.К. Применение принципа тенсегрити для создания мостовых конструкций. — Интернет-журнал «Транспортные сооружения», 2017, том 4, № 2. https://t-s.today/PDF/04TS217.pdf
Жесткие элементы тенсегрити, подверженные сжатию, не соприкасаясь друг с другом, формируют общую структуру, будучи соединены между собой тонкими, практически невидимыми растяжками, которые являются носителями стягивающих, синтропических (направленных внутрь) сил. Этот принцип Фуллер использовал при разработке проекта телетрансляционной башни высотой 3736 метров для японской телевизионной компании, тогда как высота существующих телебашен обычно не превышает 600 метров.
Образцом тенсегрити-структуры может служить пешеходный мост Курилпа (Kurilpa Bridge) длиной 470 м и шириной 6,5 м, построенный в австралийском городе Брисбен в 2009 году.
Как оказалось, в живой природе также встречаются примеры структур, которые можно описать с помощью тенсегрити-модели. Дело в том, что на живые организмы воздействует не только сила тяжести (гравитация), но и другие силы (например, ветер, осадки, необходимость отталкиваться от поверхности при передвижении и проч.).
Примером могут послужить высокие деревья. Например, сосны достигают высоты 50 метров, но даже у самых высоких из них диаметр ствола не превышает одного метра. При сильном ветре они испытывают достаточно большие продольные нагрузки. Если бы ветру сопротивлялся каждый локальный участок ствола, то деревья ломались бы даже при относительно небольшом ветре. Сосны же (как и другие деревья) при такой большой высоте и относительно небольшой толщине ствола довольно редко ломаются, скорее падают, вывернутые с корнем. Это происходит потому, что продольным нагрузкам сопротивляются силы сбалансированного сжатия-натяжения всего дерева целиком,
Структуры чистого сжатия (мы про них упоминали в главе 6 «Устойчивость») и тенсегрити-структуры по-разному реагируют на внешнее воздействие. Реакцию структуры чистого сжатия на внешнюю силу Томас Майерс иллюстрирует следующим образом: если на угол здания упадёт дерево, то этот угол рухнет, при этом остальное здание может остаться практически нетронутым [11] .
Тенсегрити-структуры ведут себя иначе. Тенсегрити можно перевести как «целостность натяжения» или «натяжение целостности». Если к тенсегрити-структуре приложить силу (сжать, надавить, потянуть), то воздействие будет воспринято не локальным участком, а всей фигурой целиком.
11
Майерс Томас. Анатомические поезда. — М.: ЭКСМО, 2019., стр. 43
Например, если мы надавливаем на тенсегрити-икосаэдр сверху, прижимая к поверхности, или сжимаем с двух сторон, то натяжение нитей увеличивается во всей конструкции. Дело в том, что тенсегрити-структура реагирует не локально, а целостно — вот основное отличие реакции на внешнее воздействие тенсегрити-структур от структур чистого сжатия: увеличение натяжения одного из компонентов тенсегрити-структуры приводит к усилению натяжения всей структуры.
Благодаря эластичности связей, когда один элемент тенсегрити-структуры сдвигается, сдвиг сообщается всей структуре, и все остальные элементы сдвигаются за ним, адаптируются к новой конфигурации.