Менеджмент. Учебник
Шрифт:
Стоит ли, однако, утверждать, что можно выявить систему у любых – всех проявлений случая? Попробуйте, например, установить общие закономерности изменения моды, формы одежды, которая, безусловно, относится к случайным явлениям. На рис. 8.1 показаны колебания мод женской одежды почти за 50 лет XX века. Срок вполне достаточный, чтобы найти хоть какие-нибудь основательные регулярности. Однако их нет. Все – и форма шляпок, и силуэт платья – меняются «как попало». Остается незыблемым лишь общий принцип: «новое – это прочно забытое старое». Предпринимавшиеся попытки связать капризы моды с мировыми катаклизмами – войнами, экономическими кризисами, даже с солнечной активностью –
Рис. 8.1. Динамика дамской моды
Возможность установления определенного порядка, закономерностей в случайных явлениях, как правило, связана с наличием в них так называемой «устойчивой частоты»: появление интересующего нас события, например рождение младенца мужского пола, при многократном повторении происходит в одинаковой доле от общего числа рождений.
Поисками закономерностей в случайных явлениях занимается специальная, хорошо разработанная в наши дни наука – статистика. Именно статистика после многих наблюдений над случаем делает заключение о том, устойчива ли частота его появления. Когда такую устойчивость удается обнаружить, статистики говорят о наличии статистического ансамбля.
Изучением закономерностей в случайных явлениях занимается теория вероятностей. Познакомимся с основами этой науки.
Как и многие другие понятия, слово «вероятность» с его производным «вероятно» входит в нашу жизнь с детства. Мы говорим: вероятно, вечером будет дождь; я, вероятно, простудился и т. п.
« Вероятно» в этих привычных фразах означает «возможно» – этим словом субъективно оценивается возможность наступления интересующего нас случайного события в будущем. Если же появляется необходимость показать степень этой возможности, мы уточняем: «весьма вероятно», «маловероятно», «совершенно невероятно». Более четкие градации, чем «много» и «мало», в обиходном языке не предусмотрены. Между тем жизненные задачи требуют оценки вероятности более конкретной, чем «много» или «мало». Сегодня на морском транспорте сказать: вероятно, будет (или не будет) происшествие – это значит не сказать почти ничего. Степень возможности появления будущего случайного события – вероятность – должна быть оценена объективно точно, определенным числом.
Самый старый, так называемый классический способ измерения вероятности – по частоте наступления интересующего нас события. Это можно сделать весьма просто: прийти в тир, выстрелить все 100 раз и сосчитать число попаданий в мишень. Доля, которую это число составит от общего числа выстрелов, и есть частота попаданий. Скажем, попали 70 раз – частота равна 0,7, или семидесяти процентам. Вот эта самая частота и принимается за вероятность.
Но что значит «принимается»? Почему не сказать просто: вероятность – это и есть частота интересующего нас события? По той же самой причине, по которой мы различаем вчерашнюю сводку погоды и прогноз на завтра. Частота– это результат события, которое уже произошло, вероятность– предсказание того, что должно случиться в будущем. Сказать: «Вероятность попадания 70 процентов» – значит предположить,
Применительно к бизнесу это означает, что если при определенных условиях в прошлом мы получали, на каждые 100 рублей 30 рублей прибыли, то при повторении ситуации в будущем сохранится и прибыль.
Откуда, однако, у нас берется уверенность, что «дальше будет, как раньше»? К этому нас подводит весь многовековой коллективный опыт человечества. Когда народ говорит, например, «У семи нянек дитя без глаза», «Тише едешь – дальше будешь» или утверждается, что «бутерброд падает маслом вниз», – это не только о прошлом, но и о будущем.
Если в течение многих лет люди наблюдают, как из 100 куриных яиц появляется примерно поровну петушков и курочек, то нет основания не верить, что и на следующий год шансы появления петушка останутся прежними. В слове «вероятно» явственно прослушивается «надеюсь». Это дало основание магистру философии Вильнюсского университета Сигизмунду Ревковскому – первому, кто в 1829– 1830 годах стал преподавать в России (тогдашней) теорию вероятностей, – определить вероятность как «меру надежды».
Итак, для того чтобы рассчитать вероятность во многих распространенных жизненных задачах, достаточно произвести весьма элементарное арифметическое вычисление – разделить число случаев, благоприятствующих интересующему нас событию, на общее число всех возможных случаев.
Важно отметить, что чем больше опытов проведено при определении частоты, тем точнее, объективнее получается вероятность. Это проявление одного из важнейших законов, управляющих случаем, – так называемого закона больших чисел.
Классический способ определения вероятностей и его формула и сегодня находят широкое применение. Если нам, скажем, известно, что среди тридцати экзаменационных билетов три очень трудных, то можно быстро прикинуть вероятность вытащить трудный билет, как = 0,1, или 10 процентов. И если бы можно было таким простым способом рассчитывать вероятности во всех случаях, то учебники по теории вероятностей (а заодно и данная глава) были бы много тоньше. К большому сожалению, столь просто рассчитывать вероятность удается далеко не всегда.
Представьте себе, что вы получили перед какой-либо жеребьевкой весьма обнадеживающую информацию: организатор кладет плохие билеты не как попало, а снизу, видно стараясь, чтобы они оказались подальше от испытуемых. Это, конечно, хорошо: стоит теперь вытянуть билет сверху – и вероятность заполучить выгодный номер резко увеличится. Но вот какой она станет? Узнать это с помощью классической формулы невозможно. Формула применима лишь тогда, когда все рассматриваемые случаи равновозможны – любой билет должен иметь одинаковые шансы попасть в руки испытуемого. Стоит исключить эту равновозможность, и классическая формула перестает работать. Следовательно, правильно эту формулу записать так: