Межпланетные путешествия. Полёты в мировое пространство и достижение небесных тел
Шрифт:
А оба тела сблизятся на 0,7 сант. + 0,7 сант.= 1,4 сант. [28] .
Таким же образом может быть вычислена сила взаимного притяжения и двух дредноутов, разделенных расстоянием в 1 километр. Масса каждого корабля — 25.000 тонн = 25.000.000 килогр. = 25.000.000.000 граммов; расстояние 1 килом. =100.000 сант. Поэтому взаимное притяжение равно
Так как 1.000 дин = 1 грамму, а грамм — около 1/4 золотника, то 4.100 дин почти равно 1 золотнику.
28
Здесь сила, действующая на тела, считалась неизменной; это верно лишь приближенно, так как с уменьшением расстояния между телами
Величина сближения кораблей под действием этой силы в течение первого часа равна
Сложнее вычислить время обращения тяготеющих тел одного вокруг другого (точнее — вокруг их общего центра тяжести), но и этот расчет может быть выполнен элементарным приемом. Вернемся к примеру двух человеческих тел и допустим, что эти тела представляют собою систему обращающихся тел. Массы их равны между собою, а потому оба тела должны обращаться вокруг точки, расположенной в середине между ними, т. е., принимая орбиту за круг, имеем, что радиус ее = 100 сант. Величина центростремительной силы кругового движения равна, как известно из механики
С другой стороны, центростремительная сила должна быть равна силе взаимного притяжения обращающихся тел — иначе кругового движения не могло бы быть. Эта сила выражается формулой
где k — „постоянная тяготения", т-е.
Приравнивая оба выражения:
определяем из этого равенства величину t, т.-е. продолжительность обращения:
откуда
Подставляя для нашего случая вместо R– 100 см., m — 65.000 и зная, что = 3,14,
имеем:
Следовательно, время обращения двух человеческих тел, кружащихся под действием силы взаимного тяготения по круговой орбите с диаметром 2 метра, равно 190.284 сек., или 53,6 часа (около двух суток) [29] .
29
Если время обращения и диаметр орбиты известны, то можно вычислить, по той же формуле, неизвестные массы обращающихся тел. Так определяют астрономы массы двойных звезд.
Как вычислить время взаимного падения тяготеющих друг к другу тел, — показано далее, в статье „Падение в мировом пространстве".
В заключение приводим интересный отрывок, характеризующий силу тяготения и заимствуемый у известного английского физика О. Лоджа [30] :
„Силы тяготения между небольшими телами незначительны и далеко превосходятся магнитными. Действительно, притяжение между телами определенной малости может быть более чем уравновешено даже давлением, возникающим вследствие их взаимного излучения, несмотря на то, что это давление почти бесконечно мало. Отсюда следует, что достаточно малые тела любой температуры отталкивают друг друга (если только они не заключены в оболочку постоянной температуры, где лучистое давление на них со всех сторон одинаково).
30
„Мировой эфир", гл. IX.
Размеры, при которых лучистое отталкивание перевешивает тяготение,
Притягательная сила тяготения между молекулами чрезвычайно мала; между двумя атомами или двумя электронами она настолько мала, что ею можно пренебречь, хотя бы расстояние между ними и не выходило из пределов размера молекулы.
А между тем, от совокупного притяжения мириад таких тел происходит результирующая сила тяготения, заметная на расстояниях в миллионы миль. Сила эта не только заметна, но величину ее нужно признать прямо-таки ужасающей.
Когда дело идет о телах астрономических размеров, сила тяготения перевешивает все другие силы; и все электрические и магнитные притяжения в сравнении с нею падают до полного ничтожества".
К главе IV
2. Теории тяготения
„Все сделанные попытки объяснить силу тяжести, как результат движения в среде, находящейся между телами, наталкиваются на то затруднение, что тяжесть беспрепятственно проходит сквозь тела, как бы велики и плотны они ни были, — пишет Аррениус [31] . — Так, например, притяжение Солнца действует на частицу, лежащую в центре Земли, сквозь все промежуточные слои. А так как действие силы должно состоять в каком-нибудь изменении движения тела, подвергающегося ее влиянию, то необходимо принять, что частица, лежащая позади другой, подверженной той же силе, по крайней мере отчасти закрыта от этого влияния. Поэтому на соединительной линии между частицею в центре Земли и любою частицею на Солнце не должна была бы лежать ни одна из бесконечно большого числа тяжелых частиц верхних слоев Земли. Значит, необходимо предположить, что частицы, на которые действует сила тяжести, имеют бесконечно малое протяжение и должны считаться математическими точками. Физически этот взгляд немыслим. Точно также невозможно представить себе, чтобы математические точки могли возмущать движение. Удивительно, что та самая сила природы, которую мы точнее всего можем проследить посредством вычисления, в физическом отношении представляет величайшую загадку".
31
Аррениус, „Физика неба".
Совершенно особым образом подходит к вопросу новейшая (1915 г.) теория тяготения, разработанная А. Эйнштейном, которая вовсе не рассматривает тяготение как некоторую „силу". Исходным пунктом теории тяготения Эйнштейна являются следующие соображения [32] :
„Вообразим себе систему в виде большого ящика или комнаты и положим сперва, что она находится в гравитационном поле, т. е. в такой части пространства, в которой действуют силы тяготения, и что она в этом пространстве неподвижна. В виде примера представим себе, что она находится на земной поверхности, где гравитация, т. е. сила тяжести, действует вертикально вниз от потолка к полу комнаты. Наблюдатели, находящиеся в этой системе, заключают следующее. Тела, спокойно лежащие на полу, на столе и т. д., производят давление на тела, находящиеся под ними. Если взять в руку какое-либо тело, напр., свинцовый шарик, и отпустить его, то он начинает падать вертикально вниз с ускорением, которое мы обозначим буквой g, и которое оказывается независящим от рода тела, если исключить сопротивление воздуха. Если шарик бросить в горизонтальном направлении, то он начнет двигаться по кривой линии (по параболе) вниз, и на некотором расстоянии от наблюдателя достигнет пола. В обоих случаях мы имеем дело с весомой массой взятого тела.
32
Приводимый далее отрывок заимствован из книги проф. О. Д. Хвольсона „Теория относительности А. Эйнштейна и новое миропонимание" (Пг., 1922).
„Теперь рассмотрим другой случай. Та же система находится в пространстве, в которого нет никакого гравитационного поля, но сама система движется с ускорением g по направлению, обратному тому направлению, в котором раньше действовала гравитация, т. е. [движется] по направлению от пола к потолку. Наблюдатель, находящийся внутри системы, замечает следующее. Все тела, спокойно лежащие на неподвижных предметах (пол, стол, рука), производят давление на свои опоры; такое же давление производит и сам наблюдатель хотя бы на пол ящика. Если наблюдатель выпустит из рук какой-нибудь предмет, напр., свинцовый шарик, то он увидит, что шарик движется по направлению к полу с ускорением g, между тем как наблюдателю, находящемуся вне ящика, тот же шарик представится неподвижным. Если наблюдатель бросит шарик по направлению, параллельному полу, то заметит, что шарик движется по кривой линии и на некотором расстоянии ударяется об пол. Наблюдателю, находящемуся вне ящика, представится, что шарик движется прямолинейно и равномерно по направлению, параллельному полу. Ясно, что для этого наблюдателя движение происходит по инерции и зависит от инертной массы шарика.