Мир астрономии. Рассказы о Вселенной, звездах и галактиках
Шрифт:
Синхротронное излучение электронов.
Поскольку энергия электронов велика (больше 1 МЭВ), а мы знаем, что подобная энергия соответствует температуре 1010 K, такое излучение — типичный пример нетеплового излучения. За возникновение электромагнитных колебаний в этом случае несут ответственность совершенно другие физические процессы, нежели хаотическое движение частиц в нагретом теле. Чтобы у читателя не возникло недоуменных вопросов, заметим,
Важно, что синхротронное излучение как раз и является типичным нетепловым процессом и по целому ряду физических характеристик его можно отличить от теплового. Один из главных критериев здесь состоит в следующем: если радиоизлучение какого-либо источника имеет тепловой характер, то его интенсивность должна заметно расти с уменьшением длины волны.
Кстати говоря, и Янский, и Рёбер сначала считали, что имеют дело с тепловым радиоизлучением. Поэтому Рёбер и перешел на более короткие волны, чем Янский, в надежде получить более мощный сигнал. Рёбер думал, что на волне 9 сантиметров сигнал будет в 104 раз больше, чем у Янского. Ничего подобного ему увидеть не удалось. Более того, на этой волне он вообще не смог обнаружить космический радиошум. Поэтому-то сейчас нетрудно отличить тепловое излучение от нетеплового: нужно, в частности, провести измерение от какого-либо источника на нескольких длинах волн. Кроме того, нужно принимать во внимание, что даже при современных параметрах радиоаппаратуры тепловое радиоизлучение от ближайших звезд дает очень слабый сигнал, находящийся на пределе возможности его обнаружения.
Современные радиотелескопы — поистине циклопические сооружения. Советский радиотелескоп РАТАН-600 имеет диаметр главного зеркала 588 метров. У радиотелескопа в ФРГ параболическая антенна диаметром в 100 метров, а вес всего антенного комплекса составляет 3200 тонн. В фокусе параболической антенны собирается поток электромагнитного радиоизлучения, а специальное устройство, размещенное в фокусе телескопа, направляет его излучение в усилительные тракты приемника. Гигантский телескоп с антенной в форме полусферы диаметром 300 метров находится в кратере потухшего вулкана на острове Пуэрто-Рико.
В принципе работа современного радиотелескопа ничем не отличается от работы обычного радиоприемника. Но, поскольку радиоастрономия имеет дело с сигналами очень малой интенсивности, здесь приходится использовать огромные антенны, которые помогают услышать самые слабые сигналы из космоса. Одна из разновидностей радиоастрономических методов — радиоинтерферометрия — дает возможность исследовать источники радиоизлучения на небе с рекордным разрешением — одна десятитысячная доля секунды. Чтобы понять, что означает подобное разрешение, заметим, что под таким углом можно было бы увидеть с Земли след космонавта на Луне!
За 50 лет своего развития радиоастрономические методы исследования буквально открыли нам новый мир. Эти 50 лет ознаменовались крупнейшими открытиями. Об одном из них мы уже говорили — это обнаружение реликтового излучения. Второе открытие было не менее сенсационным. Речь идет о знаменитых пульсарах — нейтронных звездах, существование которых было предсказано теоретиками за 30 лет до их открытия.
Нейтронная звезда была впервые обнаружена с помощью радиотелескопа аспиранткой известного английского радиоастронома профессора А. Хьюиша — Д. Белл. (Здесь мне хочется немного отвлечься и сказать о том, что история науки знает немало примеров, когда работу делает один человек, а лавры достаются другому или другим. Вспомним хотя бы драматическую историю Р. Франклин, связанную с открытием
Итак, Д. Белл открыла вращающиеся нейтронные звезды — пульсары. За это открытие А. Хьюишу присудили Нобелевскую премию в области астрофизики. Ну а что же мисс Белл? Ее имя известно сегодня любому человеку, интересующемуся астрофизикой.
Но, разумеется, на «текущем счету» радиоастрономии не только реликтовое излучение и пульсары. Открыты мощные дискретные источники радиоизлучения, и в первую очередь ярчайший источник в созвездии Лебедя — Лебедь-. Расстояние от этого источника до нашей Галактики огромно — около 200 мегапарсек, что примерно в 300 раз больше расстояния до туманности Андромеды. И хотя Лебедь- в сотни раз дальше от нас, чем эта знаменитая туманность, поток радиоизлучения от Лебедя- в 100 раз больше. Но ведь это означает, что его мощность примерно в 10 миллионов раз превышает мощность излучения в радиодиапазоне туманности Андромеды.
В метровом диапазоне Лебедь- светит примерно так же, как и Солнце. Однако до Солнца 8 световых лет, а до Лебедя- — около 700 миллионов световых лет. Проделайте сами элементарный расчет и вы увидите, что мощность радиоизлучения Лебедя- в 1028 раз превосходит мощность радиоизлучения Солнца. До открытия этого источника (1946 год) астрономии не были известны столь грандиозные явления.
Сразу хочу оговориться, что сейчас мы не затрагиваем вопросов «почему?». Мы ведем разговор лишь в плане «что» и «как». О том, чем обусловливается излучение нейтронных звезд, дискретных источников и других объектов во Вселенной, мы будем говорить в последующих разделах книги.
Вернемся к великим радиоастрономическим открытиям XX века. Речь сейчас пойдет о том, как удалось обнаружить, пожалуй, самые загадочные наблюдаемые объекты Вселенной — знаменитые квазары. К 1960 году несколько радиоисточников было надежно отождествлено со звездами, что явилось большим сюрпризом для астрономов. Ведь потоки радиоизлучения даже от близких к нам звезд очень малы. Радиоисточники отождествлялись всегда с галактиками и туманностями. Тем не менее упомянутые источники обладали вполне приличной интенсивностью.
Американский астроном М. Шмидт решил исследовать оптический спектр одного из таких источников, который наблюдался на небе как звездочка 13-й величины. Первые же результаты Шмидта оказались совершенно обескураживающими. Линии спектра этой звездочки — источника 3C 273 — не удавалось отождествить ни с какими известными лабораторными линиями! Наконец, Шмидту удалось доказать, что в спектре 3C 273 присутствуют некоторые линии водорода. Но эти линии имеют настолько сильное красное смещение, что объект должен удаляться от нас со скоростью 42 тысячи км/сек. Тогда расстояние до него около 2 миллиардов световых лет (600 мпс)! И светимость источника в этом случае должна в 100 раз превышать светимость нашей Галактики, относящейся к разряду гигантских.
Итак, среди многих тысяч звезд 13-й величины оказался объект, заведомо меньший, чем Галактика, и в то же время намного более яркий. Этот объект вряд ли когда-либо удалось бы обнаружить, если бы он не был радиоисточником. Таким образом, радиоастрономы помогли «оптикам» в этом случае открыть так называемый квазизвездный источник — квазар.
Эти объекты занимают особенное место в астрономии как новый класс объектов наряду с галактиками и звездами, но природа их до конца не понята. Свет, излученный некоторыми квазарами, путешествовал во Вселенной более 10 миллиардов лет, прежде чем попал в объектив телескопа. И. Шкловский считал открытие квазаров величайшим достижением астрономии XX века.