Чтение онлайн

на главную - закладки

Жанры

Шрифт:

Гальванические элементы Грене и Флейшера и сухой элемент фирмы «Симменс и Гальске»

Большое неудобство при использовании элементов Лекланше создавали стеклянные банки с жидкостью. Особенно сетовали на этот недостаток компании пассажирских перевозок. Океанские корабли снабжались сложной и разветвленной системой сигнализации, стараясь не уступать в этом отношении большим отелям. Но корабли подвергались качке… Сначала, чтобы не расплескать жидкость из элементов, банки с электролитом наполняли опилками, заливая сверху тем же варом. Но под такой «крышкой» образовывались газы,

и элементы стали взрываться. Не скоро научились люди изготавливать «сухие элементы», ставшие в наше время такими обычными. Да, бесчисленные батарейки, работающие сегодня в самых разных электрических и электронных устройствах, не что иное, как многократно усовершенствованный и упрощенный «элемент Лекланше». Впрочем, наряду с ним работают и другие системы – миниатюрные и не очень, они обслуживают цепи, в которых используются «слабые токи».

Великим достижением XIX века, связанным с исследованием работы тех же элементов, явилось открытие возможности последовательного и параллельного их соединения, когда в первом случае удавалось получить от них суммарное напряжение, а во втором – суммарный ток.

Сегодня эти «чудеса» изучают ребята в школьном курсе физики, и они никого не удивляют.

Электрические «консервы» и проблема энергоемкости

Давайте еще раз вернемся ко времени, когда Алессандро Вольта построил свою первую батарею. Для большинства это было чудо, которое привлекло еще больше любителей физики к электрическим экспериментам. Год или два спустя учитель музыки в Париже, некто Готеро, проводящий эксперимент по разложению воды на кислород и водород с помощью вольтова столба, обнаружил, что две золотые проволочки нехитрого прибора, соединенные вместе по окончании опыта и приложенные к языку, дают такое же ощущение, как и батарея Вольты, только значительно слабее. Объяснить это незначительное явление никто не мог, да оно было и не очень-то впечатляющим. Но несколько лет спустя к его опыту вернулся немецкий формацевт Иоганн Вильгельм Риттер, ставший позже за смелость мысли и широту взглядов членом Мюнхенской академии. Он построил столбик из сорока только медных кружков, проложенных суконками, которые были смочены подкисленной водой. Соединил полюса столбика с вольтовой батареей и через некоторое время убедился, что его конструкция зарядилась электричеством. Теперь вторичные, или заряжаемые, столбы привлекли к себе внимание многих. Тем более что имеющиеся гальванические элементы очень быстро утрачивали свою силу из-за поляризации. В 1839 году Грове изобрел газовый «вторичный элемент», который давал ток лишь после зарядки его от какого-нибудь постороннего источника. Однако из-за неудобства пользования «газовый элемент» Грове распространения не получил.

Примерно в 1859–1860 годах в лаборатории Александра Беккереля – второго представителя славной династии французских физиков – работал в качестве ассистента Гастон Планте. Молодой человек решил заняться совершенствованием вторичных элементов, чтобы сделать их надежными источниками тока для телеграфии.

Аккумуляторы XIX века

Сначала он заменил платиновые электроды «газового элемента» Грове свинцовыми. А после многочисленных опытов и поисков вообще перешел к двум тонким свинцовым пластинкам. Он их проложил суконкой и навил этот «сэндвич» на деревянную палочку, чтобы он влезал в круглую стеклянную банку с электролитом. Затем подключил обе пластины к батарее. Через некоторое время «вторичный элемент» зарядился и сам оказался способен давать достаточно ощутимый постоянной ток. При этом, если его сразу не разряжали, способность сохранять электродвижущую силу оставалась в нем на довольно длительное время. Это было настоящее рождение накопителя электрической энергии, или аккумулятора.

Слово «аккумулятор» происходит от латинского accumulator, что означает «собиратель». В технике так называют устройства, позволяющие накапливать энергию с целью ее дальнейшего использования. При этом аккумулятор может быть не только электрическим. Самым простым видом можно считать сжатую или растянутую пружину, в которой запасается механическая энергия, или тяжелый маховик, раскрученный до большого числа оборотов и запасающий таким образом кинетическую энергию. На гидроаккумулирующих станциях избыток электроэнергии используется для подъема воды из нижнего резервуара в верхний. Есть пневматические аккумуляторы, тепловые и, наконец, электрические.

Первые электрические аккумуляторы Гастона Планте имели очень незначительную емкость, то есть запасали совсем немного электричества. Но соединив несколько банок последовательно, напряжение батареи можно было увеличить, а при параллельном их включении увеличивалась емкость. При этом ток прибора оказывался тем сильнее, чем большая поверхность пластин соприкасалась с раствором электролита.

Свинцовые пластины аккумуляторов разных конструкций

Затем изобретатель заметил, что если заряженный первоначально прибор разрядить, затем пропустить через него ток в обратном направлении, да еще проделать эту операцию не один раз, то возрастает слой окисла на электродах и емкость вторичного элемента увеличится. Этот процесс получил название формовки пластин и занял у изобретателя Камилла Фора около трех месяцев…

Камилл Фор с юных лет увлекался техникой. Но он был беден и не получил образования. Вынужденный зарабатывать на жизнь, Камилл сменил множество специальностей. Был рабочим, чертежником, техником, химиком на английском пороховом заводе, работал и у Планте. Разносторонние практические знания сослужили самоучке добрую службу.

После Парижской выставки 1878 года Фору пришла идея нового способа формовки пластин. Он попробовал заранее покрывать их оксидом свинца, свинцовым суриком. При зарядке сурик на одной из пластин превращался в перекись, а на другой соответственно раскислялся. При этом слой окисла приобретал очень пористое строение, а значит, площадь его поверхности значительно увеличивалась. Процесс формовки протекал значительно быстрее. Аккумуляторы Фора при том же весе запасали значительно больше электрической энергии, чем аккумуляторы Планте. Другими словами, их энергоемкость была больше. Это обстоятельство особенно привлекало к ним симпатии электротехников. Но главная причина их возросшей популярности заключалась в другом.

В конце столетия во многих странах на улицах и в домах появилось электрическое освещение. Лампы накаливания питались энергией пока еще маломощных машин постоянного тока. Ранним утром и поздним вечером, когда энергии требовалось больше, на помощь машинам приходили аккумуляторы. Это было значительно дешевле, чем устанавливать дополнительные генераторы. Тем более что в спокойные дневные и ночные часы аккумуляторы могли заряжаться, поглощая излишки вырабатываемой машинами энергии.

Дальнейшее совершенствование свинцово-кислотных аккумуляторов шло по пути улучшения их конструкции и изменения технологии изготовления пластин.

Несмотря на широкое распространение, свинцовый аккумулятор – довольно капризное детище электротехники. Он требует очень чистого электролита. Аккуратные мотоциклисты и автолюбители это хорошо знают и доливают «банки» с электролитом только дистиллированной водой. Аккумулятор не терпит перегрузок. Если ток разряда чересчур сильный, пластины разрушаются. Не любит свинцовый аккумулятор перегрева, переохлаждения, глубокого разряда и частых перезарядов. Корпуса свинцово-кислотных аккумуляторов, изготовленные из стекла или пластмассы, хрупки. А кислотный электролит на зарядных станциях создает совершенно неприемлемую экологическую обстановку.

В 80-х годах XX столетия был предложен проект создания гигантского свинцово-кислотного аккумулятора весом более двух тысяч тонн. Предполагалось, что он займет площадь около пятой части гектара и будет предназначен для подключения к электросети в часы пиковой нагрузки. Проектная мощность – порядка сорока пяти мегаватт. Заряжать его можно в ночное время, когда потребление энергии падает.

Применение такого супераккумулятора позволило бы выровнять работу тепловых электростанций, особенно страдающих от неравномерности нагрузки, и дало экономию нефтяного топлива. Однако проект реализован не был.

Поделиться:
Популярные книги

Sos! Мой босс кровосос!

Юнина Наталья
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Sos! Мой босс кровосос!

Идеальный мир для Социопата 2

Сапфир Олег
2. Социопат
Фантастика:
боевая фантастика
рпг
6.11
рейтинг книги
Идеальный мир для Социопата 2

Газлайтер. Том 12

Володин Григорий Григорьевич
12. История Телепата
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Газлайтер. Том 12

Жребий некроманта 3

Решетов Евгений Валерьевич
3. Жребий некроманта
Фантастика:
боевая фантастика
5.56
рейтинг книги
Жребий некроманта 3

Вперед в прошлое 2

Ратманов Денис
2. Вперед в прошлое
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Вперед в прошлое 2

Темный Патриарх Светлого Рода 5

Лисицин Евгений
5. Темный Патриарх Светлого Рода
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Темный Патриарх Светлого Рода 5

Совок 9

Агарев Вадим
9. Совок
Фантастика:
попаданцы
альтернативная история
7.50
рейтинг книги
Совок 9

Аромат невинности

Вудворт Франциска
Любовные романы:
любовно-фантастические романы
эро литература
9.23
рейтинг книги
Аромат невинности

Неудержимый. Книга XI

Боярский Андрей
11. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XI

Прометей: каменный век II

Рави Ивар
2. Прометей
Фантастика:
альтернативная история
7.40
рейтинг книги
Прометей: каменный век II

Оружейникъ

Кулаков Алексей Иванович
2. Александр Агренев
Фантастика:
альтернативная история
9.17
рейтинг книги
Оружейникъ

Идеальный мир для Лекаря 20

Сапфир Олег
20. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 20

Не грози Дубровскому! Том VIII

Панарин Антон
8. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том VIII

Последняя Арена 5

Греков Сергей
5. Последняя Арена
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Последняя Арена 5