Мир философии
Шрифт:
26 Неустранимая "двуязычность", двухмерность физической теории, в которой конструктивные интуиции математического языка дополняются понятийными ин-туициями языка естественного (лучше сказать культурного), глубокая и мало продуманная особенность теоретического мышления математической физики. Уяснение физического смысла предполагает не только математическое конструирование понятий и их экспериментальную интерпретацию, но и философский анализ смысла. По этому поводу см. главу "Дисциплина чистого разума" в разделе "Трансцендентальное учение о методе" кантовской "Критики чистого разума" (см.: Кант И. Соч.: В 6 т. М., 1964. Т. 3. c 597 - 617. См. также статью В. Гейзенберга "Язык и реальность в современной физике").
Прослеживая историю физики от Ньютона до настоящего времени, мы заметим, что несколько раз - несмотря на интерес к конкретным деталям формулировались весьма общие законы природы. В XIX веке была детально разработана статистическая
Развитие химии и учения о теплоте в течение XIX века в точности следовало представлениям, впервые высказанным Левкип-пом и Демокритом. Возрождение материалистической философии в форме диалектического материализма вполне естественно сопровождало впечатляющий прогресс, который переживали в ту эпоху химия и физика. Понятие атома оказалось крайне продуктивным для объяснения химических соединений или физических свойств газов. Вскоре, правда, выяснилось, что те частицы, которые химики назвали атомами, состоят из еще более мелких единиц. Но и эти более мелкие единицы - электроны, а затем атомное ядро, наконец, элементарные частицы, протоны и нейтроны, - на первый взгляд кажутся атомарными в том же самом материалистическом смысле. Тот факт, что отдельные элементарные частицы можно было реально увидеть хотя бы косвенно (в камере Вильсона, или в пузырьковой камере), подтверждал представление о мельчайших единицах материи как о реальных физических объектах, существующих в том же самом смысле, что и камни или цветы.
Но трудности, внутренне присущие материалистическому учению об атомах, обнаружившиеся уже в античных дискуссиях о мельчайших частицах материи, проявились со всей определенностью и в развитии физики нашего столетия. Прежде всего они связаны c проблемой бесконечной делимости материи. Так называемые атомы химиков оказались составленными из ядра и электронов. Атомное ядро было расщеплено на протоны и нейтроны. Нельзя ли - неизбежно встает вопрос - подвергнуть дальнейшему делению и элементарные частицы? Если ответ на этот вопрос утвердительный, то элементарные частицы - не атомы в греческом смысле слова, не неделимые единицы. Если же отрицательный, то следует объяснить, почему элементарные частицы не поддаются дальнейшему делению. Ведь до сих пор всегда в конце концов удавалось расщепить даже те частицы, которые на протяжении долгого времени считались мельчайшими единицами; для этого требовалось только применить достаточно большие силы. Поэтому напрашивалось предположение, что, увеличивая силы, т.е. просто увеличивая энергию столкновения частиц, можно в конце концов расщепить также и протоны и нейтроны. А это, по всей видимости, означало бы, что до предела деления дойти вообще нельзя и что мельчайших единиц материи вовсе не существует. Но прежде чем приступить к обсуждению современного решения этой проблемы, я должен напомнить еще об одной трудности.
Эта трудность связана c вопросом: представляют ли собою мельчайшие единицы обыкновенные физические объекты, существуют ли они в том же смысле, что и камни или цветы? Возникновение квантовой механики примерно 40 лет назад создало здесь совершенно новую ситуацию. Математически сформулированные законы квантовой механики ясно показывают, что наши обычные наглядные понятия оказываются двусмысленными при описании мельчайших частиц. Все слова или понятия, c помощью которых мы описываем обыкновенные физические объекты, как, например, положение, скорость, цвет, величина и т.д., становятся неопределенными и проблематичными, как только мы пытаемся отнести их к мельчайшим частицам. Я не могу здесь вдаваться в детали этой проблемы, столь часто обсуждавшейся в последние десятилетия. Важно только подчеркнуть, что обычный язык не позволяет однозначно описать поведение мельчайших единиц материи, тогда как математический язык способен недвусмысленно выполнить это.
Новейшие открытия в области физики элементарных частиц позволили решить также и первую из названных проблем - загадку бесконечной делимости материи. c целью дальнейшего расщепления элементарных частиц, насколько таковое
Поэтому при описании процесса столкновения лучше говорить не о расщеплении сталкивающихся частиц, а о возникновении новых частиц из энергии столкновения, что находится в согласии c законами теории относительности. Можно сказать, что все частицы сделаны из одной первосубстанции, которую можно назвать энергией или материей. Можно сказать и так: перво-субстанция "энергия", когда ей случается быть в форме элементарных частиц, становится "материей". Таким образом, новые эксперименты научили нас тому, что два, по видимости противоречащих друг другу утверждения: "материя бесконечно делима" и "существуют мельчайшие единицы материи" - можно совместить, не впадая в логическое противоречие. Этот поразительный результат еще раз подчеркивает тот факт, что нашими обычными понятиями не удается однозначно описать мельчайшие единицы.
В ближайшие годы ускорители высоких энергий раскроют множество интересных деталей в поведении элементарных частиц, но мне представляется, что тот ответ на вопросы древней философии, который мы только что обсудили, окажется окончательным. А если так, то чьи взгляды подтверждает этот ответ - Демокрита или Платона?
Мне думается, современная физика со всей определенностью решает вопрос в пользу Платона. Мельчайшие единицы материи в самом деле не физические объекты в обычном смысле слова, они суть формы, структуры или идеи в смысле Платона, о которых можно говорить однозначно только на языке математики. И Демокрит, и Платон надеялись c помощью мельчайших единиц материи приблизиться к "единому", к объединяющему принципу, которому подчиняется течение мировых событий. Платон был убежден, что такой принцип можно выразить и понять только в математической форме. Центральная проблема современной теоретической физики состоит в математической формулировке закона природы, определяющего поведение элементарных частиц. Экспериментальная ситуация заставляет сделать вывод, что удовлетворительная теория элементарных частиц должна быть одновременно и общей теорией физики, а стало быть, и всего относящегося к физике.
Таким путем можно было бы выполнить программу, выдвинутую в новейшее время впервые Эйнштейном: можно было бы сформулировать единую теорию материи, - что значит квантовую теорию материи, - которая служила бы общим основанием всей физики. Пока же мы еще не знаем, достаточно ли для выражения этого объединяющего принципа тех математических форм, которые уже были предложены, или же их потребуется заменить еще более абстрактными формами. Но того знания об элементарных частицах, которым мы располагаем уже сегодня, безусловно, достаточно, чтобы сказать, каким должно быть главное содержание этого закона. Суть его должна состоять в описании небольшого числа фундаментальных свойств симметрии природы, эмпирически найденных несколько десятилетий назад, и, помимо свойств симметрии, закон этот должен заключать в себе принцип причинности, интерпретированный в смысле теории относительности. Важнейшими свойствами симметрии являются так называемая Лоренцова группа специальной теории относительности, содержащая важнейшие утверждения относительно пространства и времени, и так называемая изоспиновая группа, которая связана c электрическим зарядом элементарных частиц. Существуют и другие симметрии, но я не стану здесь говорить о них. Релятивистская причинность связана c Лоренцовой группой, но ее следует считать независимым принципом.
Эта ситуация сразу же напоминает нам симметричные тела, введенные Платоном для изображения основополагающих структур материи. Платоновские симметрии еще не были правильными, но Платон был прав, когда верил, что в средоточии природы, где речь идет о мельчайших единицах материи, мы находим в конечном счете математические симметрии. Невероятным достижением было уже то, что античные философы поставили верные вопросы. Нельзя было ожидать, что при полном отсутствии эмпирических знаний они смогут найти также и ответы, верные вплоть до деталей.