Мир в ореховой скорлупке (илл. книга-журнал)
Шрифт:
Можно поспорить о том, имеют ли подобные закольцованные истории частиц какое-то отношение к искривлению пространства-времени, поскольку они возникают даже на таком неизменном фоне, как плоское пространство. Но в последние годы мы обнаружили, что физические явления часто имеют в равной мере корректные дуальные описания. Можно с равным основанием говорить о том, что частицы движутся по замкнутым петлям на неизменном фоне или что они остаются неподвижными, а вокруг них флуктуирует пространство-время.
Таким образом, квантовая теория, по-видимому, позволяет перемещаться во времени в микроскопическом масштабе. Но для научно-фантастических целей вроде полета в прошлое и убийства своего дедушки от этого мало пользы. Поэтому остается вопрос: может ли вероятность при суммировании по историям достичь максимума на пространствах-временах с макроскопическими петлями времени?
Исследовать этот вопрос можно, рассматривая суммы по историям материальных полей на последовательности фоновых пространств-времен, которые становятся все ближе и ближе к тому, чтобы допускать петли времени. Было бы естественно ожидать, что в момент, когда временная петля впервые появляется, должно случиться нечто знаменательное. Так оно и произошло в простом примере, который я изучал с моим студентом Майклом Кассиди.
Фоновые пространства-времена, которые мы изучали, были тесно связаны с так называемой вселенной Эйнштейна, пространством-временем, которое Эйнштейн предложил, когда еще верил, что Вселенная является статической и неизменной во времени, не расширяющейся и не сжимающейся (см. главу 1). Во вселенной Эйнштейна время идет от бесконечного прошлого к бесконечному будущему. А вот пространственные измерения конечны и замкнуты сами на себя, подобно поверхности Земли, но только с числом измерений на одно больше. Такое пространство-время можно изобразить как цилиндр, продольная ось которого будет временем, а сечение — пространством с тремя измерениями (рис. 5.16).
Так как вселенная Эйнштейна не расширяется, она не соответствует той Вселенной, в которой мы живем. Тем не менее это удобная основа для обсуждения путешествий во времени, поскольку она достаточно проста, чтобы можно было выполнить суммирование по историям. Забудем ненадолго о путешествиях во времени и рассмотрим вещество во вселенной Эйнштейна, которая вращается вокруг некоторой оси. Если вы окажетесь на этой оси, то будете оставаться в одной и той же точке пространства, как будто стоите в центре детской карусели. Но, расположившись в стороне от оси, вы будете двигаться в пространстве вокруг нее. Чем дальше от оси, тем быстрее будет ваше движение (рис. 5.17).
В плоском пространстве скорость твердотельного вращения вдали от оси превосходит скорость света.
Так что, если вселенная бесконечна в пространстве, достаточно далекие от оси точки будут вращаться со сверхсветовой скоростью. Но, поскольку вселенная Эйнштейна конечна в пространственных измерениях, существует критическая скорость вращения, при которой ни одна ее часть еще не будет вращаться быстрее света.
Теперь рассмотрим сумму по историям частицы во вращающейся вселенной Эйнштейна. Когда вращение медленное, имеется много путей, по которым может двигаться частица при данном количестве энергии.
Но какое отношение к путешествиям во времени и временным петлям имеют вращающиеся вселенные Эйнштейна? Ответ состоит в том, что они математически эквивалентны другим фонам, в которых возможны петли времени. Эти другие фоны — вселенные, которые расширяются в двух пространственных направлениях. Такие вселенные не расширяются в третьем пространственном направлении, которое является периодическим. То есть если вы пройдете определенное расстояние в этом направлении, то окажетесь там, откуда стартовали. Однако с каждым кругом в этом направлении ваша скорость в первом и втором направлениях будет возрастать (рис. 5.18).
Если разгон невелик, то временных петель не существует. Рассмотрим, однако, последовательность фонов с все большим приращением скорости. Петли времени появляются при некоторой критической величине разгона. Неудивительно, что этот критический разгон соответствует критической скорости вращения вселенных Эйнштейна. Поскольку вычисление суммы по историям на обоих этих фонах математически эквивалентно, можно заключить, что вероятность таких фонов стремится к нулю по мере приближения к искривлению, необходимому для получения петель времени. Другими словами, вероятность искривления, достаточного для машины времени, равна нулю. Это подтверждает то, что я называю гипотезой защиты хронологии: законы физики устроены так, что не допускают перемещения во времени макроскопических объектов.
Хотя временные петли разрешены при суммировании по историям, их вероятности получаются чрезвычайно низкими. Основываясь на упоминавшихся выше соотношениях дуальности, я оценил вероятность того, что Кип Торн сможет отправиться в прошлое и убить своего дедушку: она оказалась меньше чем единица к десяти в степени триллион триллионов триллионов триллионов триллионов.
Это просто удивительно низкая вероятность, но если вы внимательно посмотрите на фотографию Кипа, то заметите легкую дымку по краям. Она соответствует исчезающе малой вероятности того, что какой-то проходимец из будущего отправится в прошлое и убьет его дедушку, и потому Кипа на самом деле здесь нет.
Будучи азартными людьми, мы с Кипом хотели бы заключить пари по поводу аномалии вроде этой. Проблема, однако, в том, что мы не можем этого сделать, поскольку сейчас придерживаемся единого мнения. А с кем-то другим я пари заключать не стану. Вдруг он окажется пришельцем из будущего, знающим, что путешествия во времени возможны?
Вероятность того, что Кип сможет отправиться в прошлое и убить своего дедушку, составляет 1/10 в степени 1060.