Мивары: 25 лет создания искусственного интеллекта
Шрифт:
С нашей точки зрения, существует вполне логичное обоснование таких провалов и ограничений в области ИИ. Главная причина в том, что не решаются реальные задачи, а делаются попытки приспособить уже известные "игрушечные" методы к разным предметным областям. Проблема естественного языка объективно является сложной, более того, вполне возможно, что его вообще нельзя формализовать, и надо использовать принципиально другие подходы. Вместо этого постоянно делаются попытки формализовать естественный язык, которые порождают в ограниченных контекстах узкоспециализированные описания некоторых предметных областей. Здесь будет уместно привести аналогию с животными: многие люди ошибочно считают, что собаки понимают человеческий язык… Есть даже шутка про студентов на экзаменах, которые все понимают, но сказать, как и собаки, не могут. Конечно же, дрессированные собаки выполняют множество команд своего хозяина, но… Дальше и начинается самое
Для понимания человеческого языка надо исследовать совсем другие научные подходы, которые принципиально отличаются от современных семантических сетей, онтологий и т.п. формализмов.
В качестве оправдания неудач и пояснения сложности проблемы понимания естественного языка можно сказать следующее. Если взять для примера животный мир, то достаточно многие его представители явно обладают интеллектом и умеют решать различные задачи: поиск пищи, распознавание образов, взаимодействие, нахождение пути домой и т.п. В классическом определении интеллекта вообще указано, что это высшая стадия для животных, включая собак, кошек, дельфинов и т.п. Многие хозяева считают своих питомцев интеллектуальными. Однако человеческий язык во всей своей сложности используется только людьми, и это одно из наиболее важных отличий нас от животных. Мы являемся сторонниками такой точки зрения: понимание естественного языка – это задача одинаковая по сложности с самим созданием ИИ в его самом сложном смысле, как создание автоматической системы равной или превышающей человеческий индивидуальный интеллект. Поэтому упрощенные "игрушечные" методы никогда не приведут к его решению. У Дж. Люгера выше именно это явно и звучит: понимание человеческой речи лежит за пределами сегодняшних методологий научных исследований. Надо разрабатывать новые подходы и методы.
Одним из таких подходов является миварный подход с его технологиями накопления данных и обработки информации в едином миварном информационном пространстве. Для понимания языка надо собрать и поддерживать в актуальном состоянии огромную базу данных фактов и такое же большое количество правил, которые позволяют выявлять нюансы смысла разных понятий в различных ситуациях. У нас пока не было подробных работ на эту тему, но во время дискуссий и обсуждений мы излагали следующий описанный ниже подход, получивший понимание и поддержку.
Итак, подход можно показать на следующей аналогии: весь язык представляет собой огромный горный массив, вершинами которого являются отдельные слова (рисунки 2, 3, 4).
Рисунок 2 – Вид с Эльбруса на Главный Кавказский хребет.
Высота 4800 м
Рисунок 3 – Вид на вершины Эльбруса (5642 м.)
с высоты 4800 м
Рисунок 4 – Долина реки Баксан на уровне 2100 метров
Тогда, слово – это вершина горы, а вся гора сама по себе и является контекстом. Если кто-то больше любит море или океан, то вместо гор можно использовать айсберги, хотя система гор все же, на наш взгляд, более адекватна предлагаемой модели. Итак, в процессе обучения человек "выращивает" эти горы у себя в голове, а общается потом внешне только словами, как бы перепрыгивая с вершины на вершину или связывая эти вершины огромными длинными виртуальными мостами. В процессе своего взросления и обучения человек "выращивает новые горы", создавая целые системы таких гор, но на основе общих здравых подходов и признаков. Высота каждой такой горы превышает, допустим, стоэтажный дом. Эти этажи образно соответствуют уровням абстракции в описаниях слов и языковых моделей. Для того чтобы восстановить в компьютере такую горную систему надо сделать ее полноразмерный математический макет. Такой макет можно делать, спускаясь этаж за этажом с вершины горы до ее основания и переходя на другую гору
Вывод: для адекватной работы с естественным языком нужны более сложные модели, принципиально новые и на несколько порядков более сложные модели на основе многомерных баз данных с поддержкой самых разнообразных отношений. Возможно, что понадобится даже работа с бесконечными плоскостями описания сущностей и т.п. В настоящее время таким требованиям отвечает только миварный подход с многомерным информационным пространством и динамически изменяющейся структурой. Реализация языковых моделей на больших вычислительных кластерах (или ГРИД-системах) на основе миварного подхода должна приблизить нас к созданию автоматической системы, понимающей и разговаривающей с людьми на естественном языке. Напомним, что эта задача сравнима по сложности с созданием самого ИИ.
Возможно, что создание таких языковых моделей, вернее символьных моделей в миварном пространстве, позволит создать электронных двойников людей для вечной жизни, которые предсказаны многими фантастами. Впрочем, эти проблемы возникнут потом, а сейчас надо приступать к реализации построения символьных языковых моделей в миварном информационном пространстве, некоторым прототипом которых являются разработки Активных миварных интернет-энциклопедий, которые к описанию фактов в ВИКИ-педии будут добавлять новые отношения, связи, взаимодействия и т.д. Более подробно эти вопросы рассмотрены при описании миварной энциклопедии и миварной модели человеческого мышления.
Опять получаем, что именно миварный подход является принципиально новым и ключевым фундаментальным направлением для решения многих, практически всех описанных в этой работе, проблем в научной области ИИ.
2.3. Представление знаний в ИИ. Семантические сети как альтернатива исчислению предикатов
Существует Гипотеза о физической символьной системе Ньюэлла и Саймона, из которой следует, что интеллектуальная деятельность как человека, так и машины осуществляется на основе следующих средств [264, стр. 58]:
1. Символьные шаблоны, предназначенные для описания важнейших аспектов области определения задачи.
2. Операции с этими шаблонами, позволяющие генерировать потенциальные решения проблем.
3. Поиск с целью выбора решения из числа всех возможных.
Дж. Люгер утверждает, что эта гипотеза лежит в основе попыток создания умных машин и неявно различает понятия шаблонов, сформированных путем упорядочивания символов, и среды, в которой они реализованы. Если уровень интеллекта определяется исключительно структурой системы символов, то любая среда, которая успешно реализует правильные шаблоны и процессы, достигнет этого уровня интеллекта, независимо от того, составлена ли она из нейронов, логических цепей, или это просто механическая игрушка. Согласно тезису Черча о вычислимости по Тьюрингу, компьютеры способны осуществить любой эффективно описанный процесс обработки символьной информации. Получается, что правильно запрограммированный компьютер обладает интеллектом [264, стр. 58]. Мы поддерживаем гипотезу о физической системе и считаем, что на основе миварного подхода в скором времени получится реализовать достаточно сложную обработку информации, которую можно будет признать интеллектуальной.
Важно и то, что, по Дж. Люгеру, в этой гипотезе указаны главные проблемы исследований в области ИИ:
· представления знаний, т.е. определения структур, символов и операций, необходимых для интеллектуального решения задачи;
· поиска, т.е. разработки стратегий для эффективного и правильного поиска потенциальных решений, сгенерированных этими структурами и операциями.
Необходимо отметить, что не все ученые согласны с указанной гипотезой. Есть критики, например Виноград и Флорес, которые утверждают, что интеллект является наследственно биологическим и экзистенциальным и не может быть зафиксирован с помощью символов. Такая критика характерна для следующих направлений исследований в области ИИ: развитие нейронных сетей, генетических алгоритмов и агентно-ориентированных методов [264, стр. 58]. Отметим, что большая часть этих критиков проводит исследования и работает на рефлексивном до-интеллектуальном уровне исследований в области ИИ, согласно предложенной нами классификации, изложенной в этой работе (раздел 7.3). Видимо, именно из-за рефлексивности своего уровня эти ученые и не соглашаются с гипотезой о физической символьной системе. На втором уровне, уровне интеллектуальных исследований, преобладает мнение о верности указанной гипотезы.