Чтение онлайн

на главную

Жанры

Многоликая Вселенная

Линде Андрей Дмитриевич

Шрифт:

Вот оказывается, что во Вселенной тоже имеется аналогичный член, который описывает уравнение для скалярного поля. Уравнение-то выглядит точно так же. И этот член похож на этот. Вот оказывается, что во Вселенной эффект трения возникает, если Вселенная быстро расширяется. Вот такой трюк. Теперь давайте вернемся к предыдущей картинке.

Вот когда скалярное поле здесь, то энергии у скалярного поля мало, Вселенная расширяется медленно, трения никакого нету. Если скалярное поле находится здесь, то энергия очень большая. Если энергия очень большая, посмотрим, что получается, на следующей картинке.

Энергия очень большая, Хаббловская постоянная большая, коэффициент трения большой. Если коэффициент

трения большой, скалярное поле катится вниз очень медленно. Если скалярное поле катится вниз очень медленно, то в течение большого времени оно остается почти постоянным. Если оно остается почти постоянным, я решаю вот это уравнение: a с точкой на a (a/a) равняется почти постоянной. А я вам уже сказал, какое будет решение. Если a с точкой на a (a/a) является почти постоянной, то это экспоненциальное решение, самое простейшее дифференциальное уравнение. И в таком случае Вселенная начинает расширяться экспоненциально.

Логика такая: если большое значение скалярного поля , большая скорость расширения Вселенной, большой коэффициент трения, поле катится вниз очень медленно. Решая дифференциальное уравнение с константой, получаем экспоненциальное расширение, это есть инфляция. Всё очень просто.

До этого надо было, в общем, помучиться, чтобы додуматься, чтобы всё свести к простому. В действительности началось всё с гораздо более сложного. Впервые идеи такого типа стал высказывать Алеша Старобинский в 1979 году здесь, в России. Его вариант этой теории основывался на квантовой гравитации с определенными поправками — конформные аномалии, теория была очень сложной, непонятно было, как, с чего начать, но теория, тем не менее, внутри Советского Союза была тогда очень популярной, она называлась «моделью Старобинского». Но немножко сложноватой, не было понятно, какая ее цель. Он хотел решить проблему сингулярности, это не удавалось...

После этого возникло то, что сейчас называется старая инфляционная теория, ее предложил в 1981 году Алан Гус (Alan Guth) из MIT — сейчас он в MIT, а раньше он было в SLAC, рядом со Стэнфордом. Он предложил, что Вселенная с самого начала сидит зажатая по своей энергии в состоянии ложного вакуума, никуда не движется, энергия там постоянная, в это время она расширяется экспоненциально, а потом этот ложный вакуум с треском разваливается, образуются пузырьки, они соударяются... Зачем это было нужно? А его желание состояло в том, чтобы решить тот лист проблем, который я вам написал раньше: почему Вселенная однородная, почему она изотропная, почему такая большая, — его цель была такая. И в этом было достоинство его работы. Не потому, что он предложил модель — его теория не работала, а потому, что он сказал, что вот замечательно было бы сделать что-то такое, и тогда мы решим сразу все эти проблемы. А его модель не работала потому, что после столкновения пузырьков Вселенная становилась такой неоднородной и изотропной, что, как бы, не надо было и стараться...

После этого все мы находились в состоянии душевного кризиса, потому что идея была такая приятная, такая симпатичная, и у меня была язва желудка, может быть от огорчения, что нельзя, никак не получается. А потом я придумал, как сделать то, что я назвал новой инфляционной теорией, а потом я придумал вот эту простую штуку с хаотической инфляцией, которая была проще всего. И тогда стало ясно, что мы говорим не о трюке каком-то, а всё может быть так просто, как теория гармонического осциллятора.

Но зачем это всё надо, я не сказал. А вот зачем. Во время инфляции, во время вот этой стадии, пока я катился вниз, Вселенная могла расшириться вот в такое количество раз. Это в простейших моделях. Что означает вот эта цифра? Ну вот я сейчас скажу, что это означает. Пример из арифметики. Самый маленький масштаб — 10–33 см. Умножу его на десять, а дальше здесь рисуется вот такое вот количество нулей — не важно, какое количество нулей. Теперь возникает вопрос: чему равняется произведение? И ответ состоит в том, что вот, оно равняется вот этому же — значит, что 10–33 можно уже не писать, это маленькая вещь. Значит, Вселенная оказывается вот такого огромного размера. А сколько мы сейчас видим? Вот эти 13 миллиардов лет, умноженные на скорость света, — это примерно 1028 см. А вот это даже не важно, чего — сантиметров или миллиметров, не важно даже чего. Важно то, что вот это, ну, несопоставимо меньше этого.

То есть наша наблюдаемая часть Вселенной — мы вот где-то вот здесь. (Можно сейчас уже погасить, да?) Вселенная начала расширяться, раздувалась, раздувалась, раздувалась, и мы живем как бы на поверхности этого огромного глобуса. И поэтому параллельные линии кажутся параллельными, поэтому никто и не видел этого северного и южного полюса. Поэтому наша часть Вселенной, где-то здесь, она вот началась где-то вот отсюда, из почти что точечки, и поэтому-то здесь все начальные свойства, ну, они-то рядышком, они были примерно одинаковыми. Поэтому и здесь они одинаковые.

А почему Вселенная такая однородная? Ну а представьте, что вы взяли Гималаи и растащили их вот в такое количество раз. Значит, у вас никто туда с рюкзаком не пойдет, потому что от долины до горы надо будет вот столько идти. Будет плоское место. Поэтому наша Вселенная такая плоская, такая однородная, во всех направлениях одинаковая.

Почему она изотропная? Что называется изотропной? Ну, она похожа как бы на сферу, во всех направлениях одинаковая, но она могла бы быть как огурец. Но если я огурец раздую вот в такое количество раз — а мы живем на его шкурке, — то во всех направлениях он будет одинаковым, поэтому Вселенная во всех направлениях станет одинаковой. То есть таким образом мы решаем большинство тех проблем, которые у нас возникали. Почему Вселенная такая большая? А вот почему! А сколько там элементарных частиц? А вот столько! Поэтому нам и хватает...

То есть мы еще не знаем, откуда всё это взялось, мы не можем так просто решить проблему сингулярности начальной — мы про это еще немножечко дальше скажем, — но вот это то, зачем была нужна эта теория.

С другой стороны, могло бы оказаться, что мы переработали немножко. Потому что если Гималаи полностью выплощить, то вся Вселенная будет настолько плоская и однородная, что действительно будет плохо жить там, мы тогда галактики ниоткуда не возьмем.

Но оказалось, что можно галактики продуцировать за счет квантовых флуктуаций. И это то, что здесь же, в ФИАНе, говорили Чибисов и Муханов. Они изучали модель Старобинского и увидели, что там, если посмотреть на квантовые флуктуации пространства, а потом посмотреть, что происходит во время расширения Вселенной, то они вполне могут породить галактики. И мы на них смотрели и думали: что вы, ребята, тут говорите? Вы говорите о квантовых флуктуациях, а мы говорим о галактиках! Они же реальные... А потом вот что выяснилось. Это уже когда мы перевели всё это на язык скалярного поля и так далее... Молодцы, в общем, люди! Надо же было додуматься до этого!

Поделиться:
Популярные книги

Бездомыш. Предземье

Рымин Андрей Олегович
3. К Вершине
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Бездомыш. Предземье

Фиктивный брак

Завгородняя Анна Александровна
Фантастика:
фэнтези
6.71
рейтинг книги
Фиктивный брак

Правила Барби

Аллен Селина
4. Элита Нью-Йорка
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Правила Барби

Чайлдфри

Тоцка Тала
Любовные романы:
современные любовные романы
6.51
рейтинг книги
Чайлдфри

Купеческая дочь замуж не желает

Шах Ольга
Фантастика:
фэнтези
6.89
рейтинг книги
Купеческая дочь замуж не желает

Идеальный мир для Социопата 13

Сапфир Олег
13. Социопат
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Идеальный мир для Социопата 13

Чемпион

Демиров Леонид
3. Мания крафта
Фантастика:
фэнтези
рпг
5.38
рейтинг книги
Чемпион

Курсант: Назад в СССР 10

Дамиров Рафаэль
10. Курсант
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант: Назад в СССР 10

Черный Маг Императора 4

Герда Александр
4. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 4

Мастер 3

Чащин Валерий
3. Мастер
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер 3

Кодекс Охотника. Книга XXV

Винокуров Юрий
25. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
6.25
рейтинг книги
Кодекс Охотника. Книга XXV

Неудержимый. Книга XI

Боярский Андрей
11. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XI

Рядовой. Назад в СССР. Книга 1

Гаусс Максим
1. Второй шанс
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Рядовой. Назад в СССР. Книга 1

Черный Маг Императора 9

Герда Александр
9. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 9