Моделирование канала коротковолновой радиосвязи
Шрифт:
Напряжение помехи рассчитывается по формулам, приведенным в [3] для симметричного полуволнового вибратора в свободном пространстве, то есть, без учета влияния земли. Поскольку в качестве приемной антенны у нас используется симметричный вибратор с характеристиками от полуволнового до волнового и высотой подвеса h=/2, диаграмма направленности которого отличается от диаграммы направленности полуволнового вибратора в свободном пространстве, нужно определить коэффициент для пересчета напряжения шума. Для этого сравним диаграммы направленности полуволнового и волнового симметричных вибраторов.
Функция направленности симметричного вибратора, находящегося в свободном пространстве в плоскости, проходящей через ось вибратора записывается в
(2)
где k=2/ – волновое число;
– длина плеча вибратора в частях длины волны ;
– угол в радианах, отсчитываемый от оси вибратора.
Поскольку для полуволнового симметричного вибратора =/4, то для него функция направленности запишется:
< image l:href="#"/>(3)
Максимальное значение F/2max=1 при =/2.
Функцию направленности в плоскости, перпендикулярной оси вибратора можно записать:
(4)
Для волнового симметричного вибратора =/2 и функция направленности будет иметь вид:
(5)
Максимальное значение Fmax=2 при =/2.
Функцию направленности в плоскости, перпендикулярной оси вибратора можно записать:
(6)
Влияние земли на диаграмму направленности антенны учитывают с помощью формулы [2]:
(7)
где ko – коэффициент отражения от земли, примем ko=1;
h=/2 – высота подвеса антенны;
– сдвиг фаз между антенной и ее зеркальным отражением, для горизонтальных антенн =180о;
1 – угол, отсчитываемый от вертикали.
Тогда
(8)
После перехода к дополнительному углу =90о– 1, отсчитываемому от поверхности земли, будем иметь:
(9)
Тогда функции направленности полуволнового и волнового вибраторов в вертикальной плоскости можно записать:
(10)
(11)
Максимальные значения этих функций будут F/2max=2 и Fmax=4,
Максимальные значения функций направленности в плоскости вибратора и в плоскости перпендикулярной оси вибратора должны быть равны. Если максимальное значение функции направленности в плоскости перпендикулярной оси вибратора увеличилось в
раз, то и в плоскости проходящей через ось вибратора и расположенной под углом к горизонту, соответствующему максимальному значению функции направленности в плоскости перпендикулярной оси вибратора, максимальное значение
увеличилось в
раз. Поэтому, функции направленности в плоскости проходящей через ось вибратора и расположенной под углом
=30
о
к горизонту, то есть плоскости, проходящей через середину одного из двух лепестков диаграммы направленности, нужно пересчитать по формулам:
(12)
(13)
В дальнейшем приведенные выше функции направленности (12) и (13) будем считать функциями диаграммы направленности в горизонтальной плоскости.
Мощность помехи, приходящей с некоторого направления под углами и будет определяться по формуле:
(14)
где Uп – напряжение помехи на входе приемника;
– действующая длина антенны;
Ra – волновое сопротивление антенны;
Rf – волновое сопротивление фидера;
Eп – напряженность поля помехи в точке приема;
– коэффициент пропорциональности;
– функция направленности антенны;
– нормированная функция направленности антенны;
Fmax – максимальное значение функции направленности антенны.
Будем считать, что помеха принимается антенной со всех направлений верхней полусферы с одинаковой интенсивностью, фазы случайны и равновероятны. Тогда мощность принимаемых помех будет суммой элементарных мощностей Рп, то есть интегралом по полусфере:
(15)