Наши развилки. Развилки эволюции природы на пути к человечеству
Шрифт:
Концентрация вещества планеты по плотности началась с обособления земного ядра радиусом ~3,4 тыс. км. Тяжелые металлы (преимущественно железо и его минералы, а также никель) погрузились в центр, формируя внутреннее суперплотное ядро радиусом ~1,2 тыс. км и внешний жидкий слой железо-никелевого ядра толщиной ~ 2,2 тыс. км. Внутреннее, центральное ядро в форме шара расположено на глубинах от 5150 до 6371 км. Элементный состав этой части земного шара представлен в основном железом (около 90 %) и никелем, кроме того, присутствуют минералы серы, кислорода и ряда других элементов. Внутреннее ядро проявляет себя в геофизических полях как неоднородное тело: наружная оболочка включает огромные, протяженные кристаллы (длиной около 10 км.), ориентированные с юга на север, а центральная часть ядра заполнена кристаллами, вытянутыми с запада на восток. Однако прежде вещество как внешнего, так и внутреннего ядра было жидким. Постепенное охлаждение недр Земли со скоростью около 100 °C за миллиард лет привело к затвердению внутреннего
Сохранение к настоящему времени довольно высокой температуры во внутреннем ядре может быть объяснено, в какой-то степени радиоактивным распадом изотопов урана, тория и возможно некоторых других элементов. Хотя этот источник тепла не может быть основным по причине ничтожно малого содержания радиоактивных элементов в ядре по сравнению с земной корой. В земной коре эти, очень тяжелые долгоживущие радиоактивные элементы оказались потому, что их соединения с легкими элементами имеют малую плотность. Благодаря весьма высокому давлению вещество в ядре не кипит, несмотря на огромную температуру. Считается, что внутреннее ядро постепенно увеличивается в размерах за счет охлаждения и затвердевания переходной зоны от жидкого ядра.
Внешний слой железо-никелевого ядра (слой E), или, иначе говоря, внешнее ядро, представляет собой жидкую оболочку, которая обволакивает внутреннее твердое ядро. Состав внешнего ядра представлен в основном железом, его оксидами, никелем, в небольшой пропорции – кремнием, серой и другими примесями. Жидкое его состояние объясняется тем, что меньшее давление при высокой температуре в этом слое не обеспечивает затвердение раскаленного металла. Сохранение до настоящего времени на нашей планете жидкого состояния вещества во внешнем ядре является важным её отличием от других планет земного типа Солнечной системы. Наличие твердого ядра (слоя G) в жидкой оболочке представляется одной из тех важных особенностей планетного направления эволюции природы, которое связано с Земной развилкой. Конвекция вещества во внешнем ядре, которая подобна бушующему морю жидкого металла, порождает земной магнетизм. Появление и эволюция жизни на нашей планете во многом обязаны наличию геомагнитного поля, генерация которого связана с присутствием именно пары – внутреннее твердое ядро в жидком слое внешнего ядра, что является своеобразной динамо-машиной. Магнитосфера вокруг Земли защищает все живое от губительного воздействия заряженных частиц космоса и солнечного ветра, о чем описано выше, в разделах: Ранняя магнитная развилка и Поздняя магнитная развилка эволюции Земли.
Исследования показали, что внутреннее ядро и внешний слой вращаются в разные стороны. Внешнее жидкое ядро вращается вокруг своей оси с востока на запад, а внутреннее – с запада на восток. Интересно, что скорость вращения внутреннего ядра немного превышает скорость обращения в целом планеты. Центр Земли является мотором, который обеспечивает активность всех систем планеты, включая биосферу. Например, на Марсе всё ядро уже отвердело и там прекращена глобальная тектоника, отсутствует магнитное поле, способное защитить живые организмы. Эта планета лишилась внутренней энергии, она стала «мертвой», не способной к рождению и эволюции жизни.
Обособление земного ядра не означало прекращение его подпитывания новыми порциями тяжелого вещества, источником которого была и остается мощнейшая оболочка – двухслойная мантия, перекрывающая ядро. В мантии собрано две трети планетного объема, в то время как на ядро приходится одна треть. Мантия состоит в основном из соединений кремния, магния, кислорода, железа, кальция и алюминия. Её состав до сих пор остаётся очень близким к первичному веществу Земли, несмотря на продолжающиеся более 4 млрд. лет активные процессы химико-плотностной дифференциации. За счет такой дифференциации происходит вещественное обеднение мантии. Постепенно тяжелые соединения перемещаются из мантии к центру – в ядро. Легкие элементы и их минеральные комплексы всплывают в верхние слои планеты, формируя и обновляя литосферу, гидросферу и атмосферу. В результате в мантии теперь отсутствуют тяжелые железо, никель, а также соединение железа и серы – сульфид железа. А также произошло обеднение состава первичного вещества мантии легкими веществами (азотом, водородом, оксидами калия и натрия и др.). Зато за счет химико-плотностной дифференциации мантия обогатилась окислами кремния (SiO2) и магния (MgO). Первичное вещество Земли содержало 57 % этих двух окислов, а современная мантия – 83 %.
Мантия перекрыта корой, подошва которой называется границей Мохоровичича (сокращено, Мохо). Переход от коры к мантии отражается резким возрастанием плотности горных пород, который прослеживается на глубинах от 7 км (под океанами) до 70 км (под горными массивами). Мантия разделена на две части: верхнюю мантию и нижнюю. Верхняя мантия имеет толщину ~ 980 км, нижняя – 1920 км.
В верхней мантии самый верхний слой (волновод Гутенберга) имеет твердую кристаллическую структуру, не отличающуюся от вышележащей коры. Поэтому этот слой мантии совместно с корой образуют литосферу. Литосфера подстилается пластичной оболочкой мантии – астеносферой. Кровля астеносферы характеризуется фазовым переходом от кристаллических пород к пачке частично расплавленных пород, совпадающим с изотермой 1200–1300 °С. Она простирается на разных глубинах: от минимальных в зонах срединно-океанических хребтов под океанами (50 км) до максимальных (~ 200 км) под материками. Толщина астеносферы ~ 150–200 км и более. Нижняя граница нерезкая, приблизительно совпадает с изотермой 1500–1600
Астеносфера состоит из 5–6 слоев, представленных чередованием твердых и расплавленных ультраосновных пород (дунитов, перидотитов и др., состоящих в основном из цветных минералов – оливина, пироксенов; бедных кремнием – SiO2; обогащенных магнием). В целом состав астеносферы представлен минералами: оливином 57 %, пироксеном 29 %, гранатом 23 %. Плавление пород при огромных температурах и давлениях на таких глубинах возможно только в присутствии воды. Откуда вода там? Дело в том, что находящийся там минерал роговая обманка имеет в своем составе связанную воду, которая при тех температурах приобретает свободную форму. Эта вода способна обеспечить частичное плавление пород астеносферы.
Вещество астеносферы не обладает пределом прочности, в отличие от литосферы, поэтому оно может деформироваться (течь) под действием даже очень малых избыточных давлений. Конвективное течение вещества астеносферного слоя увлекало за собой литосферу, расколов ее на ряд крупных и множество мелких плит. Под воздействием поднимающихся по разломам раскаленных магматических масс из мантии происходило раздвижение (спрединг) плит в океанах и наращивание новых участков океанической коры. Такие зоны называются срединно-океаническими хребтами. От этих зон литосферные плиты медленно раздвигаются. В зонах столкновения одна плита поддвигается под другую (субдукция), возникает глубокий океанический желоб. Рядом возникает цепь вулканов и гряда высоких гор (например, Гималаи поднялись 45 млн. л.н. в процессе столкновения Индийской и Евразийской плит). В океанических желобах литосферные плиты погружаются в земные недра с температурами более 500 °С, где происходит переплавление погрузившихся пород. Проникшие в мантию горные породы снова изливаются на поверхность в виде раскалённой магмы в зонах раздвижения плит. Такой механизм постоянной переработки вещества планеты за счет горизонтального перемещения литосферных плит способствует продолжению дифференциации вещества по плотности и формированию все более сложных минеральных форм. Астеносфера является основным источником эндогенных процессов в земной коре (магматизма, метаморфизма).
Под тектоносферой, между верхней и нижней мантией на глубине ~ 400 км существует следующий фазовый переход (слой Голицына [17] , слой C, переходная зона толщиной 600 км), обусловленный увеличением давления с глубиной без изменения химического состава. На этой границе минералы граната и шпинели приобретают более плотную структуру перовскита и ильменита (FeTiO2, примеси: магний, марганец), характерную минералам нижней мантии. Распространяется нижняя мантия до глубин около 2900 км. Толщина её достигает 2230 км. Температура составляет до 2000 °С.
17
Под астеносферой залегает слой Голицина, фазовое состояние которого заставляет атомы и минералы приобретать очень плотную упаковку, значительно повышающую плотность горных пород. Под слоем Голицина (на глубинах 700-1000 км) распространяется нижняя мантия, в которой еще больше уплотняется структура вещества. Нижний слой мантии прослеживается до глубины 2900 км, с которой начинается жидкое внешнее ядро.
В составе нижней мантии (слой D), на её границе с ядром выделяется переходная зона на глубине около 2700 км, толщиной около 200 км. Здесь осуществляется значительное освобождение силикатной мантии от железа, которое переходит в ядро. В этой зоне облегченное вещество формирует плюмы, которые представляют собой горячие потоки мантийного вещества, движущиеся вверх от основания мантии. Плюм представляет собой субвертикальную колонну диаметром около 100 км с грибообразной верхней частью. Они поднимаются от границы мантии и ядра с глубины 2980 км или от границы нижней и верхней мантии с глубины около 660–670 км и выносят под литосферу вещество и тепло глубинных недр Земли. На поверхности Земли над плюмами возникает область вулканизма, формируются трапповые провинции, внутриконтинентальные рифты и другие геологические явления. Тектоника плюмов, наряду с тектоникой литосферных плит, определяет изменения в строении Земли, её рельефе и составе. Каким образом горные породы мантии, не менее твердые, чем сталь, способны течь в недрах планеты? Дело в том, что пластическим деформациям способствует очень длительная продолжительность времени, в течение которого массивы горных пород находятся в механическом напряжении. Высокое давление и значительная температура в недрах способны вызвать пластические деформации кристаллических минералов. Кроме того, в определенных жестких термобарических условиях кристаллические тела превращаются в аморфные, которые могут течь подобно жидкости. Породы на глубинах от 15–20 км и глубже, оставаясь твердыми, способны быть пластичными. Такие же минералы, как, например, галит (каменная соль, NaCl) обладают способностью течь и формировать грибообразные колонны, купола на глубинах от 2–3 км и более. В практике бурения нефтедобывающих скважин глубиной 3–6 км часто встречаются случаи, когда каменная соль или пласты глины проявляют свои пластичные свойства тем, что сдавливают в стволе скважины буровые инструменты.