Чтение онлайн

на главную - закладки

Жанры

Натуральные числа. Этюды, вариации, упражнения
Шрифт:

Каждое обратное действие приводило к расширению понятия числа. Вычитание, чтобы быть замкнутой операцией, расширило множество натуральных чисел до чисел целых, которые включают в себя все натуральные числа, к ним еще добавляется ноль, и числа противоположные натуральным – отрицательные числа. Для замкнутости деления чисел пришлось снова расширять множество чисел, уже до чисел рациональных. Наконец, извлечение корня и вычисление логарифмов потребовали введения чисел иррациональных, которые вместе с рациональными числами составили множество действительных или вещественных чисел.

На множестве действительных чисел стали выполняться все перечисленные операции, но…захотелось извлекать корни четной степени из отрицательных чисел, и придумали числа комплексные. Думаете на этом остановились, как бы ни так. Есть еще числа гиперкомплексные. И все это тоже

удивительно интересно, но мы не станем «растекаться мыслью по древу» и вернемся к числам натуральным.

Все перечисленные бинарные операции с натуральными числами известны из программы начальной и средней школы, также, надеюсь, как и свойства этих операций.

Работая с натуральными числами, в особенности с многозначными числами, состоящими из нескольких цифр, часто приходится выполнять с ними операции, которые являются унарными (приставка уно от слова один), то есть операции, выполняемые с одним отдельно взятым числом, а не с парой чисел. Например, признак делимости на 3 определяется так: многозначное число делится на 3, если сумма его цифр делится на 3. Аналогично, на 9 делятся те числа, сумма цифр которых делится на 9. Оба раза звучит словесный оборот «сумма цифр данного числа», который для каждого числа однозначно определяет некоторое другое натуральное число. Фактически, это действие можно считать функций, заданной на множестве натуральных чисел, а иначе можно назвать унарной операций. Часто работая с этим понятием, для него почему-то не придумали специального знака. Работая далее с натуральными числами, приходится рассматривать сумму квадратов цифр данного числа или сумму кубов цифр числа, количество делителей числа, сумму всех его делителей или сумму собственных делителей (в которые не входит само число), приходится упорядочивать цифры числа по возрастанию или по убыванию и так далее. Все эти операции применяются к отдельно взятому числу, то есть являются унарными операциями. Для обозначения этих операций математики используют разные знаки, например, для обозначения суммы всех делителей натурального числа Леонард Эйлер ставил перед числом знак интеграла, об этом написал Д. Пойа, который сам использовал обозначение «функция сигма от n» [25]. В разных книгах встречаются и другие попытки обозначения подобных операций. Или же для них сохраняются словесные формулировки. Это привело меня к мысли ввести для этих унарных операций специальные, различные, но однотипные, обозначения.

Если рассматривать знаки бинарных операций (кроме возведения в степень и обратных к нему), то знак действия ставится между двумя числами. Для унарной операции это не подойдет, число одно. Не поставишь знак и справа от числа, там будет стоять знак равенства, справа от числа и выше ставится показатель степени, справа и ниже ставится индекс числа. Выход один, навеянный физиками:

Свободна левая сторона числа. Предлагаю ввести новую группу знаков для обозначения унарных математических операций с натуральными числами. Например, ставим знак плюс слева и снизу от числа для обозначения суммы цифр числа, получаем запись:

+n – сумма цифр данного натурального числа, например, +56235=5+6+2+3+5=21.

Далее вводим обозначения других унарных операций по аналогии с первой операцией:

+2n – сумма квадратов цифр данного натурального числа,

+2562=52+62+22=25+36+4=65;

+3n – сумма кубов цифр данного натурального числа,

+3235=23+33+53=8+27+125=160;

+dnсумма всех делителей данного натурального числа,

+d12=1+2+3+4+6+12=28;

+sn – сумма собственных делителей данного числа,

+s6=1+2+3=6;

qdn – количество делителей данного числа, qd24=8;

qsn – количество собственных делителей числа, qs30=7;

вn – упорядочение цифр данного числа по возрастанию,

в4723=2347;

уnупорядочение цифр данного числа по убыванию,

у4723=7432;

хn – произведение цифр данного числа,

х1953=1·9·5·3=135.

В этом предложении есть свои плюсы. Во-первых, любой введенный математический знак фактически является иероглифом, то есть заменяет целое слово или, как здесь, целую группу слов.

Во-вторых, все эти знаки есть в редакторе формул программы Microsoft Word и, следовательно, никаких проблем с набором текстов на компьютере не создадут.

Время покажет, приживется ли это предложение.

Среди унарных операций, которые можно провести с каждым натуральным числом есть одна, которая первоначально использовалась не в математических целях, а в целях околонаучных, типа гаданий, предсказаний и тому подобного. Операция называется вычисление цифрового корня числа. Цифровой корень натурального числа – это цифра, полученная в результате повторяющегося процесса суммирования цифр сначала данного числа, затем вновь полученного, повторяя процесс до тех пор, пока не будет получена одна цифра. Например, цифровой корень числа 1987652 это 2, потому что 1+9+8+7+6+5+2=38, далее 3+8=11 и, наконец, 1+1=2. Для этой операции встречается и другое название – конечная сумма цифр. В обоих случаях название многословное. Пользуясь сказанным выше, по аналогии, можно ввести обозначение для этой унарной операции: (+)n – тогда запись примет вид: (+)1987652=2. Объяснение вводимого знака следующее: + означает суммирование цифр, а круглые скобки показывают, что суммирование неоднократное, как в периодической дроби они показывают период цифры.

Очевидное свойство цифрового корня: n<=9(+)n=n, то есть цифровой корень однозначного числа равен этому числу, а точнее этой цифре. Имеет место следующее утверждение: Сумма цифр числа n имеет такой же остаток при делении на 9, как и число n.

Поскольку, если число больше 9, сумма цифр этого числа меньше самого числа, то справедливы следующие две формулировки:

а). Цифровой корень числа совпадает с остатком от деления исходного числа на 9, если только этот остаток отличен от 0.

б). Для чисел, сравнимых с 0 по модулю 9, цифровой корень равен не 0, а 9.

Цифровые корни часто используют для того, чтобы убедиться, что какое-нибудь очень большое число не является точным квадратом или кубом. Все квадраты имеют цифровые корни 1, 4, 7 или 9, а их последними цифрами могут быть 2, 3, 7 или 8. Кубы могут оканчиваться на любую цифру, но их цифровыми корнями могут быть только 1, 8 или 9.

Поделиться:
Популярные книги

Идеальный мир для Лекаря 15

Сапфир Олег
15. Лекарь
Фантастика:
боевая фантастика
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 15

Вернуть невесту. Ловушка для попаданки 2

Ардова Алиса
2. Вернуть невесту
Любовные романы:
любовно-фантастические романы
7.88
рейтинг книги
Вернуть невесту. Ловушка для попаданки 2

Идеальный мир для Социопата 3

Сапфир Олег
3. Социопат
Фантастика:
боевая фантастика
6.17
рейтинг книги
Идеальный мир для Социопата 3

Кровь Василиска

Тайниковский
1. Кровь Василиска
Фантастика:
фэнтези
попаданцы
аниме
4.25
рейтинг книги
Кровь Василиска

Отвергнутая невеста генерала драконов

Лунёва Мария
5. Генералы драконов
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Отвергнутая невеста генерала драконов

Идеальный мир для Лекаря

Сапфир Олег
1. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря

Аномалия

Юнина Наталья
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Аномалия

Идущий в тени 4

Амврелий Марк
4. Идущий в тени
Фантастика:
боевая фантастика
6.58
рейтинг книги
Идущий в тени 4

Мастер 4

Чащин Валерий
4. Мастер
Фантастика:
героическая фантастика
боевая фантастика
попаданцы
5.00
рейтинг книги
Мастер 4

Неверный

Тоцка Тала
Любовные романы:
современные любовные романы
5.50
рейтинг книги
Неверный

Газлайтер. Том 15

Володин Григорий Григорьевич
15. История Телепата
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Газлайтер. Том 15

Мастер Разума II

Кронос Александр
2. Мастер Разума
Фантастика:
героическая фантастика
попаданцы
аниме
5.75
рейтинг книги
Мастер Разума II

Те, кого ты предал

Берри Лу
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Те, кого ты предал

Мастер 2

Чащин Валерий
2. Мастер
Фантастика:
фэнтези
городское фэнтези
попаданцы
технофэнтези
4.50
рейтинг книги
Мастер 2