НЕэлектронные компьютеры и их создатели
Шрифт:
Отдельно следует сказать о русских счетах или о «Дощатом счете», как их назвали прежде, разработанных в период регентства Елены Глинской (1533—1538). Глинская была дочерью литовского князя и второй женой московского князя Василия III, в отличие от русских женщин, она получила европейское образование, была начитана и знала несколько языков. Среди прочих новаций в ее правление была проведена денежная реформа, объединившая две существовавшие в то время московскую и новгородскую денежные системы. Был введен единый рубль, содержащий 100 копеек, копейка делилась на деньгу 1/2 копейки, полушку 1/4 копейки и полуполушку 1/8. Для работы с этими мелкими монетами в счеты была введена спица с четырьмя костями (эта особенность конструкции сохранялась до последнего времени, никто не знает почему), а в остальном русские счеты гениальны в своей простоте – на каждой спице по разряду, внутри оси счет по унарной системе. Такая конструкция прекрасно соответствовала запросам не слишком грамотного
В более грамотной и научившейся скорописи Европе возникла конкуренция между счетом «на бумажке» и с использованием абака. Аллегория этого спора представлена на гравюре, размещенной на титульном листе четвертой книги Грегора Рейша «Жемчужина философии» (Margarita Philosophica, 1508), посвященной арифметике. На ней Богиня Арифметика судит соревнование древнегреческого математика и язычника Пифагора с римским христианским теологом Боэцием. Пифагор считает на абаке (странно, не на греческом, а на немецком, да к тому же адаптированном под римские цифры!), а Боэций делает то же на бумаге. Соревнование условное, конкурентов разделяет временная дистанция более 1000 лет.
В 1814 модернизированный китайцами абак в форме русских счетов вернулся в Европу вместе русскими войсками, вступившими в Париж, им восхитились, но такой популярности, как на Востоке, он не обрел. А вот в шестидесятые годы прошлого века американский педагог Тим Кранмер изобрел и успешно внедрил использование суаньпаня для обучения арифметике людей, не имеющих зрения.
Однако вернемся к протоабаку, его корни обнаруживаются в Месопотамии, где нашелся кто-то заметивший, как упростить выполнение действия сложения и вычитания над числами, представленными в десятичной или шестнадцатеричной системе счисления. Оказывается, для упрощения счета можно выкладывать глиняные жетоны с обозначениями вдоль линий, прочерченных на песке и, перемещать их определенным образом. Связь с песком подтверждается греческим словом абак, пришедшим из финикийского, где «абк» означает песок или чертить на песке. Греки внесли усовершенствование, они использовали особые ящики, заполненные песком, их назвали песчаными абаками. Историк Геродот, живший в V веке до н.э., указывал на египетское происхождение абака. Позже в Греции устройство абака сводилось к доске с нанесенными на нее желобками, пользователь абака перемещал фишки между эти желобками. Этот абак был всего лишь вспомогательным средством, не случайно его еще называли счетной доской.
Первой найденной счетной доской стала Саламинская Скрижаль (Salamis Tablet) – мраморная доска, найденная в 1846 году на греческом острове Саламин. Ее размер 150 x 75 x 4,5 см. Доска не сразу была признана счетной, поначалу ее рассматривали как поле для некоторой игры. Сложности в определении ее предназначения были связаны с тем, что в Греции до III века до н. э. преимущественно использовали аттическую, или старогреческую систему счисления, ее сменила ионийская, или новогреческая. Это непозиционная система счисления с алфавитной нумерацией, где цифры записывают буквами греческого алфавита. Для счета на греческой доске приходилось использовать фишки разного достоинства с нанесенными на них буквами. На известной Вазе Дария, произведенной IV веке до н.э., в греческом городе Таранто, среди прочих есть фрагмент, на котором изображен сборщик налогов, использующий счетную доску. Символы на ней похожи на символы, обнаруженные на Саламинской Скрижали.
Римляне смогли сделать важный переход от счетной доски к абаку в более близком к нынешнему представлению о нем. Они заменили архаичную греческую систему на более удобную римскую, уже десятичную, но еще не позиционную. Благодаря этому громоздкие каменные или деревянные доски уступили место небольшим бронзовым планшетам, а фишки разного достоинства одинаковым шарикам, но по совершенству этим устройствам, несмотря на внешнюю схожесть, до суаньпаня было далеко.
Европейская история абака делится на три периода – античный с III века до н.э. до V века н.э., когда он получил широкое распространения в Греции и в Риме. В Темные века (с VI по X век) в Западной Европе были утеряны многие античные достижения, а том числе и абак. В третий – средневековый с XI по XV век, когда были попытки его возрождения. Несостоявшемуся возращению на сцену способствовал все тот же Папа Сильвестр II (946 – 1003), успешно сочетавший церковную детальность с научной. Он открыл современникам знания, накопленные в античном и арабском мире, но забытые в Европе после падения Римской империи. Папа Сильвестр использовал арабские цифры и ноль, поэтому мог считать чрезвычайно быстро, за что современники обвиняли его в магии. Но усилий, приложенных им, на возрождение абака не хватило, этот инструмент изредка встречался в Европе до XVI века, когда
Сохранились документальные свидетельства лишь об одной попытке усовершенствовать абак, ее предпринял в 1616 году англичанин Уильям Пратт. Он изобрел устройство, названное им «Арифметической драгоценностью» (Arithmeticall Jewell) и описал его в книге, представляющей инструкцию по работе. Это карманного формата планшет, на котором размещена матрица из вращающихся сегментов-полукружий с нанесенными на них цифрами. Вращая их каким-то образом, можно задавать два числа и выполнимое действие. Никакого детального описания этого устройства нет, поэтому остается принять на веру возможность получения таким образом результата.
Русское чудо
В России же, напротив, конструкция счетов активно совершенствовалась, во второй половине XIX века, на их основе было создано несколько оригинальных устройств, в том числе самосчеты В. Я. Буняковского, изготовленные в единичном экземпляре, они хранятся в Политехническом музее. Самосчеты внешне совсем не похожи на русские счеты, но имеют тот же принцип действия, решения, предложенные другими изобретателями также сохраняли связь с традицией. Генерал-майор Ф. М. Свободский изобрел в 1828 году прибор, с дополнительными полями для запоминания промежуточных результатов. А. К. Больман в 1860 году, изготовил счеты с 9 косточками, на них можно было возводить в степень, извлекать корни, вычислять сложные проценты в дополнение четырем действиям. Счеты Ф. В. Езерского были дополнены валиками для умножения и деления.
В конце XIX века было сделано множество изобретений, усовершенствовавших классические счеты, наиболее успешное принадлежит военному инженеру капитану Юрию Дьякову. Под названием New Russian Abacus оно было представлено на Парижской выставке 1878 года. Очень похожий компактный прибор создал американец Джеймс Бассет, он успешно продавался до 1930 года.
Но все же следует признать, что счеты отлично подходят для более простых задач, ограниченных двумя действиями – сложение и вычитание. То, как блистательно владели им русские предприниматели, описал А.П. Чехов в рассказе «Репетитор», где купец Удодов, решив задачу, с удовлетворением говорит: «И без алгебры решить можно». Но они совсем не годятся для тех инженерных расчетов, где, как минимум, требуются умножение и деление.
Глава 4
Основоположники
Недолгий период, длившийся с середины XVII и до начала XVIII века, оказался одним из самых значимых в компьютерной истории. За это время были сделаны те основные изобретения, которые стали фундаментом практически для всех механических счетных устройств на три века вперед. В последующем было сделано множество порой чрезвычайно красивых изобретений, но ничего принципиально нового. В отличие от электроники механика оказалась скупа на новизну. Авторами двух новаций стали Блез Паскаль и Клод Перро, они предложили разные конструкции устройств, механизирующих сложение и вычитание (adding machines), соответственно в 1642 и 1670 годах), а еще двое, Готфрид фон Лейбниц и Джованни Полени, стали авторами машин (multiplication machines), способных к четырем действиям арифметики, соответственно 1672 и 1709.
Паскаль создал первое в истории механическое счетное устройство – Паскалину, состоящую из нескольких десятков шестерен, главное достоинство которого в наличии механизма переноса 1 в старший разряд при сложении и займа 1 при вычитании. Бесчисленное множество изобретателей на протяжении следующих 300 лет пыталось решить эту задачу и только некоторым удалось. Менее известен не уступающий по функциональности, но существенно более простой сумматор Клода Перро, странно названный им рабдологическим абаком, хотя ни к рабодологии – счету на палочках Непера, ни к абакам он отношения не имеет. Судьбы этих двух типов сумматоров заметно различаются. Паскалина вызвала фурор в привилегированных кругах французского общества, ее многократно клонировали в XVIII веке, но никакого практического применения ни она, ни ее копии не получили, однако сегодня сохранившиеся экземпляры и реплики занимают почетное место в музеях. Перро описал свое изобретение в одной из своих многочисленных публикаций и после этого о рабдологическом абаке забыли на полтора века. Идеи Перро были возрождены в многочисленных ползунковых, или цепочечных сумматорах, производимых в массовом количестве с середины XIX до середины XX века, к этим конструкциям мы еще вернемся, при этом имя Перро не вспомнили.