Неприятности с физикой: взлёт теории струн, упадок науки и что за этим следует
Шрифт:
Карло Ровелли из Центра теоретической физики в Марселе является моим хорошим другом, который работает в квантовой гравитации. Он имел такие же ощущения, когда он включил утверждение, что конечность теории струн никогда не была доказана, в диалог, который он написал, инсценировав дебаты между различными подходами к квантовой гравитации. Он получил так много электронных писем, декларировавших, что Мандельштам доказал конечность теории, что он решил написать самому Мандельштаму и спросить его точку зрения. Мандельштам уже ушёл в отставку, но быстро откликнулся. Он объяснил, что он доказал то, что где-либо в теории не возникает определённый вид бесконечного члена. Но он сказал нам, что он в самом деле не доказал, что сама теория конечна, поскольку могут появляться другие виды бесконечных членов [119] . До настоящего момента ни один из таких членов не наблюдался
119
Вот электронное письмо от Мандельштама, датированное 8 июня 2006:
«По поводу моей статьи о конечности n-петлевой струнной амплитуды позвольте мне, во-первых, заметить, что расходимости могут появляться только тогда, когда пространство модулей вырождается. Я исследовал точки вырождения, связанные с „дилатонной“ расходимостью, с которой имеют дело струнные теоретики. Я показал, что аргументы, применявшиеся ранее к однопетлевой амплитуде, могут быть распространены на n-петлевую амплитуду, а также, что соответствующие неоднозначности в определении контура интегрирования по однородным супермодулям могут быть разрешены с использованием однозначного предписания, согласующегося с унитарностью. Я согласен, что это не обеспечивает математически строгое доказательство конечности, но я уверен, что это работает в физических проблемах, которые могли бы привести к бесконечностям. Я не исследовал другого источника бесконечностей, известного с ранних дней дуальных моделей, а именно использования мнимого времени. Множитель exp(iEt), где E есть разница между текущей и начальной энергиями, явно может расходиться, если интегрирование проводится по мнимому времени. Есть уверенность из физических соображений, что такие бесконечности могут быть удалены аналитическим продолжением на реальное время. Это было явно показано для беспетлевой [древесной] и однопетлевой амплитуды, и было показано, что аналитическое продолжение, приводящее к конечности, может быть определено для двухпетлевой амплитуды.»
Ни один из струнных теоретиков, с кем я обсуждал эту проблему, не решил, узнав, что конечность теории не доказана, остановить работу над теорией струн. Я также сталкивался с хорошо известными струнными теоретиками, которые настаивали, что они доказали конечность теории десятилетия назад и не опубликовали результаты только вследствие некоторых технических проблем, которые остались нерешёнными.
Но когда и если проблема конечности урегулирована, мы должны будем спросить, как произошло, что так много членов исследовательской программы были не осведомлены о статусе одного из ключевых результатов в их области? Не должно ли это иметь отношение к тому, что между 1984 и 2001 годом многие струнные теоретики говорили и писали о конечности теории, как если бы это был факт? Почему многие струнные теоретики чувствовали себя комфортабельно, обращаясь к сторонним слушателям, точно так же, как к инсайдерам, с использованием языка, который подразумевал, что теория полностью конечна и последовательна?
Конечность в теории струн не единственный пример предположения, уверенность в котором широко распространена, но которое до сих пор не доказано. Как мы обсуждали, в литературе имеется несколько версий предположения Малдасены, и они имеют очень отличающиеся следствия. Верно то, что самое сильное из этих предположений далеко не доказано, хотя некоторая слабая версия, определённо, хорошо поддержана. Но это не то, как струнные теоретики рассматривают вопрос. В недавнем обзоре предположения Малдасены Гэри Горовиц и Джозеф Полчински сравнили его с хорошо известным нерешённым предположением в математике, гипотезой Римана{22}:
В целом мы видим убедительные причины поместить [предположение Малдасены о дуальности] в категорию верных, но не доказанных. В самом деле, мы рассматриваем его почти на том же основании, как и такое математическое предположение, как гипотеза Римана. Оба предположения обеспечивают неожиданные связи между кажущимися различными структурами… и каждое сопротивляется как доказательству, так и опровержению, несмотря на сконцентрированное внимание. [120]
120
G.T. Horowitz and J. Polchinski, «Gauge/gravity duality,» <Калибровочно-гравитационная дуальность> . К публикации в Towards Quantum Gravity, <По направлению к квантовой гравитации>, ed. DanieleOriti, Cambridge University Press.
Я никогда не слышал, чтобы математик ссылался на результат, как на «верный, но не доказанный», но, кроме того, изумляет в этом утверждении, что авторы, два очень умных человека, игнорируют очевидную разницу между двумя случаями, которые они обсуждают. Мы знаем, что обе структуры, связанные гипотезой Римана, математически существуют; что под вопросом только предполагаемые отношения между ними. Но мы не знаем, существуют ли реально как математические структуры теория струн или суперсимметричная калибровочная теория; на самом деле их существование является частью того, что находится под вопросом. Что эта цитата делает ясным, так это то, что эти авторы основываются на предположении, что теория струн является хорошо определённой математической структурой, — несмотря на широкое согласие о том, что, даже если она верна, мы не имеем идеи, что это за структура. Если вы не делаете это недоказанное предположение, тогда ваша оценка подтверждения самой сильной версии предположения Малдасены должна разойтись с их оценкой.
Когда речь идёт о защите их уверенности в этих недоказанных предположениях, струнные теоретики часто отмечают, что нечто располагает «общей уверенностью» в сообществе струнной теории, или что «нет здравомыслящей личности, которая бы сомневалась, что это верно». Они, кажется, чувствуют, что апелляция к консенсусу внутри их сообщества эквивалентна рациональному аргументу. Вот типичный пример из блога хорошо известного струнного теоретика:
Каждый, кто не проспал последние 6 лет, знает, что квантовая гравитация в асимптотически анти-деСиттеровом пространстве имеет унитарную временную эволюцию… С большим накоплением подтверждений для AdS/CFT, я сомневаюсь, что имеется много остающихся отказников, кто сомневается, что вышесказанное утверждение имеет место не только в полуклассическом пределе, который рассматривал Хокинг, но и в полной непертурбативной теории. [121] (Курсив мой.)
121
http://golem.ph.utexas.edu/~distler/blog/archives/000404.html.
Нехорошее чувство признавать необходимость быть одним из отказников, но детальное изучение доказательств заставляет меня быть им.
Это бесцеремонное отношение к точной поддержке ключевых предположений является контр-продуктивным по нескольким причинам. Первое, в комбинации с тенденциями, описанными ранее, это означает, что почти никто не работает над этими важными открытыми проблемами — делая более вероятным, что они останутся нерешёнными. Это также приводит к коррозии этики и методов науки, поскольку большое сообщество умных людей готово поверить в ключевые предположения без потребности увидеть их доказанными.
Более того, когда открываются великие результаты, они часто преувеличиваются. Некоторые не струнные теоретики спрашивали меня, почему я работаю над чем-то другим, когда струнная теория полностью объяснила энтропию чёрных дыр. Хотя я глубоко восхищён работой Строминджера, Вафы и других по экстремальным чёрным дырам (см. главу 9), я должен снова и снова повторять, что точные результаты не распространились на чёрные дыры в целом, на что есть серьёзные причины.
Аналогично, утверждение, что гигантское число струнных теорий существует с положительной космологической константой (много обсуждаемый «ландшафт») далеко не безоговорочно. Хотя некоторые ведущие струнные теоретики готовы на основе этих слабых результатов сделать великие объявления по поводу успеха теории струн и будущих перспектив.
Вполне может быть, что постоянное преувеличение даёт теории струн преимущество перед её конкурентами. Если вы являетесь главой департамента или должностным лицом субсидирующей организации, разве вы более вероятно не будете финансировать или предлагать работу учёному, который работает на программу, указывающую на решение больших проблем, по сравнению с учёным, который мог бы только утверждать, что он или она имеет свидетельства, что может существовать теория, — до настоящего момента не сформулированная, — которая имеет потенциал решать проблемы?
Позвольте мне суммировать, как мы можем видеть, куда это нас завело. Дискуссия приводит к семи необычным аспектам сообщества теории струн:
1. Потрясающая самоуверенность, приводящая к ощущению обладания правом и принадлежности к элитному сообществу экспертов.
2. Необычно монолитное сообщество с сильным ощущением консенсуса, подкрепляемого доказательствами или нет, и необычной однородностью взглядов по открытым вопросам. Эти взгляды кажутся связанными с существованием иерархической структуры, в которой идеи нескольких лидеров диктуют точку зрения, стратегию и направление развития области.