Чтение онлайн

на главную

Жанры

Шрифт:

Итак, формулу Бейеса следует применять в том случае, когда мы ровно ничего не знаем о единичном событии. Так ли обстоит дело с дождливой погодой?

На основании многолетних наблюдений в городе Брюсселе установлено, что если дождь идёт 1 день, то вероятность того, что он будет идти и завтра, равняется 0,63; если дождь идёт 2 дня – его вероятность на завтра равна 0,68, 3 дня – 0,70, 5 дней – 0,73. Согласно же формуле Бейеса мы должны были бы иметь 0,66; 0,75; 0,80 и 0,86. Хотя опыт и теория близки, полного совпадения нет: формула оказывается несколько более пессимистична, чем реальная действительность.

Лучше совпадают с выводами теоремы Бейеса данные, полученные при наблюдении смены температуры. По данным того же города Брюсселя,

вероятность того, что завтра температура будет такой же, как и вчера, равна 0,75; если 2 дня температура была неизменной, то она останется такой же и завтра с вероятностью 0,76; если 3 дня неизменна, то сохранится и завтра с вероятностью 0,78; если 5 дней, то с вероятностью 0,83, и если температура не менялась 10 дней, то с вероятностью 0,85 она останется той же и в 11-й день.

Как видите, предсказание по принципу «сегодня как вчера» имеет обоснование в теории вероятности. Большинство прогнозов погоды носит именно такой характер, а чтобы судить о научной мощи предсказаний, надо было бы скидывать со счётов все прогнозы типа «погода остаётся без изменений». Кажется, так метеорологи и поступают, когда испытывают новые теории и схемы предсказания погоды. Предвидение потепления или похолодания – вот в чём должно проявиться понимание законов климата.

Но вернёмся к работе Бейеса. Мы проиллюстрировали примерами лишь одну из формул его теории, касающихся вероятности повторения событий. Но оправданы также попытки предсказания будущего и тогда, когда ряд событий неоднороден и состоит из чередующихся удач и неудач. В этом случае формула Бейеса меняется лишь незначительно: в её знаменателе будет стоять полное число событий плюс 2. Например, если проведённая на курорте неделя (7 дней) порадовала нас всего лишь одним хорошим днём, то вероятность дождя на восьмой день нашего отдыха будет вычисляться так: P=(6+1)/(7+2)=7/9.

Если в баскетбол играет сильная команда «Спартак» со слабой командой, скажем текстильного института, и если, придя с опозданием к началу состязания, мы узнаем, что счёт 1 : 10 в пользу института, то мы все же не поставим и гривенника против рубля за команду студентов. Для предсказания исхода состязания формула, о которой идёт речь, явно без пользы. Она «работает» лишь в том случае, если нам ничего не известно о вероятностях выигрыша и проигрыша команд – участниц состязания. Вот если бы я не знал, кто играет, и не видел бы техники игры, тогда, зная счёт 1 : 10, я действительно имел бы право сделать заключение: вероятность того, что следующее очко заработает ведущая команда, равна 11/13.

Интересно применение работы Бейеса в случаях, когда наши заключения об исходе события делаются на основании комбинации априорного (доопытного) знания и знания результата опыта. Из полной колоды карт потеряли одну. Какую – неизвестно. Некто просто «с потолка» высказывает гипотезу, что потеряна пика. Ясно, что при отсутствии какого-либо дополнительного знания вероятность этой гипотезы равняется 1/4. Вероятность противоположного утверждения, что потеряна не пика, равна 3/4. Поскольку автор первой гипотезы настаивает на проверке своего утверждения, то ставит опыт. Из колоды берутся две карты, которые оказываются пиками. Нетрудно видеть, что сторонники второй гипотезы после этого опыта укрепляются в своём мнении, а шансы авторов первой упали.

Формулы Бейеса позволяют произвести и количественные оценки. Можно рассчитать, насколько изменились вероятности гипотез после того, как получена дополнительная информация. Мы не будем приводить формулы и производить вычисления, а подчеркнём лишь идейную сторону дела.

Довольно редко дело обстоит так, что после проведённого единичного эксперимента ошибочные гипотезы смело могут быть отброшены, а единственно правильная поставлена на пьедестал почёта. Большей частью разовый опыт лишь изменяет вероятность достоверности высказанных гипотез. Если одна из них «взяла верх» над другими не слишком значительно, то потребуется и второй эксперимент, а может быть, и третий, и сотый. По мере накопления информации вероятность правильной гипотезы будет постепенно расти. Впрочем, рост может быть и не монотонным, а на каком-то разе так называемая правильная гипотеза может здорово проиграть и даже совсем рухнуть. Так в примере урны с шарами дело может обстоять следующим образом: вытянув десять чёрных шаров, мы уже почти уверимся в том, что в ней нет шаров иного цвета, ан нет – одиннадцатый раз вытащили белый, и вопрос вновь остаётся открытым. В конце концов истина восторжествует и наступит ясность, и тогда опытное исследование может быть прекращено, и результат обнародован.

Имеется ряд проблем, в которых вероятности гипотез могут быть достаточно хорошо вычислены на каждом этапе исследования в зависимости от полученного объёма информации. В подобных случаях планирование эксперимента может быть поручено ЭВМ. Машина будет оценивать вероятности всех гипотез после каждого шага и остановится тогда, когда вероятность одной из гипотез станет настолько значительной, что её можно считать истиной.

Работы Томаса Бейеса лежат в основе современного подхода к эксперименту. Подход этот используется в генетических исследованиях, в теории военной стратегии, в исследовании движения ядерных частиц и во многих других областях деятельности людей.

Миллион цифр

В заголовке мы написали «миллион цифр», а точнее надо бы было сказать – миллион случайных цифр. Такая книжка, не содержащая ничего, кроме миллиона цифр, вышла в свет и нашла своих читателей. Возьмём ряд случайных цифр: 0, 1, 9, 6, 7… Что, собственно говоря, означает, что они образуют случайную последовательность? И кого интересует такой ряд? Начнём с ответа на второй вопрос.

Представьте себе, что вы проводите обширный эксперимент по агротехнике. Поле разбито на 1000 небольших участков, каждый из которых должен быть ухожен определённым способом. Пускай способов таких (агротехнических систем) 10. Занумеруем их. Теперь нужно решить, на каком участке какую агротехническую систему применить. Для этого каждому участку припишем какую-либо цифру от 0 до 9, и притом сделаем так, чтобы приписка была совершенно случайной. Только при случайной нумерации наши выводы о целесообразности того или иного способа обработки почвы будут лишены сознательной или бессознательной ошибки, связанной с тем, что для какого-то «излюбленного» способа выбираются лучшие участки.

Поручить кому-либо называть цифры наобум нельзя, нельзя даже ребёнку, который не заинтересован в пропаганде ваших или ещё чьих-то агротехнических теорий, нельзя потому, что, оказывается, каждый человек питает симпатию к одним и нелюбовь к другим цифрам. Поэтому «наобум» не будет означать «случайно». Ряды же случайных цифр нужны самым разным экспериментаторам: медикам и социологам, администраторам и полководцам, экономистам и метеорологам и многим-многим другим.

Нужду в случайных цифрах испытывают также и математики, решающие свои задачи так называемым методом Монте-Карло, который становится все более распространённым по мере увеличения числа электронно-вычислительных машин. Чтобы дать хоть некоторое представление об этом методе, приведём несколько простых примеров.

Мы хотим вычислить площадь произвольной сложной фигуры, какую представляет, ну скажем, Московская область на карте. Площадь всей карты найти просто – надо помножить её ширину на длину. А как быть с фигурой причудливой формы?

Представьте себе, что на карту падают капли дождя и случайным образом усеивают карту. Подсчитаем общее число капелек и число капелек, попавших на интересующую нас Московскую область. Ясно, что отношение этих чисел должно равняться отношению площади всей карты к площади Московской области.

Поделиться:
Популярные книги

Горькие ягодки

Вайз Мариэлла
Любовные романы:
современные любовные романы
7.44
рейтинг книги
Горькие ягодки

Сама себе хозяйка

Красовская Марианна
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Сама себе хозяйка

Черный Маг Императора 6

Герда Александр
6. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
7.00
рейтинг книги
Черный Маг Императора 6

Последний Паладин. Том 2

Саваровский Роман
2. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 2

Огни Аль-Тура. Завоеванная

Макушева Магда
4. Эйнар
Любовные романы:
любовно-фантастические романы
эро литература
5.00
рейтинг книги
Огни Аль-Тура. Завоеванная

Законы Рода. Том 7

Flow Ascold
7. Граф Берестьев
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Законы Рода. Том 7

Жандарм 2

Семин Никита
2. Жандарм
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Жандарм 2

Измена. Мой заклятый дракон

Марлин Юлия
Любовные романы:
любовно-фантастические романы
7.50
рейтинг книги
Измена. Мой заклятый дракон

Его темная целительница

Крааш Кира
2. Любовь среди туманов
Фантастика:
фэнтези
5.75
рейтинг книги
Его темная целительница

Кодекс Охотника. Книга V

Винокуров Юрий
5. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
4.50
рейтинг книги
Кодекс Охотника. Книга V

Неудержимый. Книга XVI

Боярский Андрей
16. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XVI

Жена по ошибке

Ардова Алиса
Любовные романы:
любовно-фантастические романы
7.71
рейтинг книги
Жена по ошибке

Real-Rpg. Город гоблинов

Жгулёв Пётр Николаевич
1. Real-Rpg
Фантастика:
фэнтези
7.81
рейтинг книги
Real-Rpg. Город гоблинов

Венецианский купец

Распопов Дмитрий Викторович
1. Венецианский купец
Фантастика:
фэнтези
героическая фантастика
альтернативная история
7.31
рейтинг книги
Венецианский купец