Невидимая Вселенная. Темные секреты космоса
Шрифт:
Мы уже немало говорили об электрических и электромагнитных силах, действующих между электрическими зарядами и позволяющих обычной материи сталкиваться и не распадаться. Но что заставляет эти силы действовать между электрическими зарядами? Уж точно не канцелярские резинки или пружины, а фотоны. Два заряда толкают или притягивают друг друга, обмениваясь фотонами (небольшими частицами электромагнитных волн).
Испытать похожий процесс на себе можно, если пойти с другом на каток и начать бросать туда-сюда тяжелый предмет, например, воздушный шар с водой. Каждый раз при передаче шара, вы будете отталкиваться друг от друга. Точно так же два электрических заряда будут перебрасывать фотоны между собой, и, в точности как у конькобежцев,
Фотоны похожи на маленькие мешочки с электромагнитным излучением. Все наблюдаемое нами электромагнитное излучение состоит из фотонов. Означает ли это, что электрические заряды постоянно передают друг другу небольшие вспышки света, пока сталкиваются и отталкиваются? И, получается, мы можем увиде ть эти вспышки? Нет, к сожалению или к счастью, в нашей и без того заряженной электричеством реальности было бы невыносимо много света. Это то, что мы называем «виртуальными фотонами» (я же говорил, что квантовая физика странная), и их нельзя рассматривать точно так же, как световые волны от горячей плиты. Но даже если эти виртуальные фотоны не видны глазу, фотон выполняет роль переносчика энергии между электрическими зарядами.
С другими силами природы также связаны переносчики взаимодействия, задействованные в обмене силами между частицами. В Стандартной модели есть три еще не рассмотренные нами частицы: глюон, W-бозон и 2-бозон. Глюон — переносчик так называемого сильного ядерного взаимодействия, в то время как W- и 2-бозоны — переносчики слабого взаимодействия.
Подведем итоги:
Фотоны — переносчики электромагнитного взаимодействия.
Глюоны — переносчики сильного ядерного взаимодействия.
W- и Z-бозоны — переносчики слабого взаимодействия.
Сильное ядерное взаимодействие происходит между кварками. Благодаря этому взаимодействию объединяются верхние и нижние кварки, образуются протоны и нейтроны. А потом уже нейтроны и протоны с помощью сильного взаимодействия объединяются в ядра атомов.
Насколько сильнб сильное ядерное взаимодействие? Давайте сравним его с электромагнитным взаимодействием. Как вы, возможно, помните, дополнительных электронов на Луне и Земле, равных массе коровы, хватило бы, чтобы сделать электрические силы столь же мощными, как гравитационные силы между двумя небесными телами. И в то же время мы помним, что чем короче расстояние между зарядами, тем сильнее напряженность электрического поля. Каждый раз, когда расстояние между зарядами уменьшается вдвое, напряженность сил возрастает в четыре раза. Расстояние между двумя протонами в ядре атома — всего 10– 15 метров (одна миллионная нанометра), поэтому и отталкивающие электрические силы между протонами должны быть огромными. Тем не менее атомное ядро может содержать множество протонов, и, несмотря на огромные отталкивающие электрические силы, сильному ядерному взаимодействию удается преодолеть их и не дать ядру распасться. Недаром же его называют сильным.
Сильное взаимодействие происходит благодаря глюонным частицам. Глюоны обладают некоторыми забавными свойствами, которые, в свою очередь, делают ядерные взаимодействия уж очень особенными. На расстояниях около 10– 15 метров (типичном расстоянии между частицами в атомном ядре) сильное ядерное взаимодействие будет обладать притягивающими свойствами и помогать ядру удерживать все частицы вместе. Если мы попытаемся сжать ядро сильнее, то сильное взаимодействие внезапно станет отталкивающим. А если отойти на расстояние чуть больше 10– 15 метров, то это взаимодействие
Лично мне трудно представить себе сильное ядерное взаимодействие, не вспомнив ребенка, прилипшего влажным языком к холодному металлическому забору. В этой ситуации язык играет роль глюона. В отличие от сильного ядерного взаимодействия, силы, из-за которых ребенок прилип к холодному металлу, остаются, лишь пока язык полностью прилегает к поверхности. Стоит ребенку рывком вырваться из плена, удерживавшие его силы быстро исчезнут и станут незначительными.
Мы уже поняли, что гравитационные силы действуют между частицами, обладающими массой, а электромагнитные силы — между частицами с электрическим зарядом. Точно так же сильное взаимодействие существует только между частицами, имеющими то, что мы называем цветовым зарядом. Такое название не имеет никакого отношения к привычным нам цветам; это лишь способ описать характеристики некоторых частиц. Аналогия с цветами появилась из-за того, что существует три типа таких зарядов: красный, зеленый и синий. Таким образом, мы сопоставляем их с тремя основными доступными человеческому глазу цветами. Цветовой заряд бывает только у кварков и глюонов.
Стоит обратить внимание на то, что цветовой заряд имеют не только кварки, но и глюоны. Это означает, что глюоны, участвующие в сильном ядерном взаимодействии, способны, взаимодействуя, еще и влиять друг на друга. Это как если бы у фотонов были электрические заряды и они начали отталкивать и притягивать друг друга, излучая новые фотоны во время своего путешествия по космическому пространству. Это бы все только усложнило. И тот факт, что у глюонов есть цветной заряд, также частично объясняет, почему сильные ядерные взаимодействия ведут себя настолько странно.
Если мысленно вернуться к эпизоду с примерзшим языком ребенка, то на этот раз можно представить, что ребенок вырывается и отчаянно пытается освободиться от металлического забора. Тлюоны (язык) сами по себе имеют цветной заряд, а значит, способны самостоятельно образовывать новые глюоны — это все равно как если бы всё более отчаянные рывки ребенка привели к появлению новых языков. Чем сильнее ребенок тянет, тем больше появляется языков, которые еще сильнее приковывают ребенка к металлической поверхности.
Как вы понимаете, расстояния важны для фундаментальных сил. Расстояния также играют не последнюю роль в последнем из четырех фундаментальных взаимодействий, то есть слабом. Но, прежде чем мы приступим к его рассмотрению, давайте разберемся до конца с тремя другими взаимодействиями и посмотрим на радиус их действия:
• При расстояниях меньше 10– 15 метров: всем управляет сильное ядерное взаимодействие до тех пор, пока существуют частицы с цветовым зарядом. Электрические силы и гравитация свои пять копеек тут вставить особо не могут.
При расстояниях от 10– 15 метров до нескольких метров: во главе угла — электромагнитное взаимодействие. Расстояния становятся слишком большими для сильного ядерного взаимодействия, а силы гравитации слишком слабы, чтобы кто- то спрашивал их мнение.
При расстояниях от нескольких метров и выше: гравитационное взаимодействие становится все могущественнее. В таких масштабах большинство объектов имеет нулевой электрический заряд, и поэтому электромагнитное взаимодействие молчит в сторонке.