Нищета мозга
Шрифт:
В результате такой энергетической стабилизации на нижнем минимуме мозг достигает состояния полного биологического счастья. Оно закрепляется внутренней стимуляцией при помощи эндорфинов и других метаболитов, очень похожих по действию на наркотики. Последствия такого «счастья» нетрудно предсказать, хотя в зависимости от обстоятельств они могут индивидуализироваться. Как правило, любители инстинктивно-гормонального образа жизни успешно обходятся без особых интеллектуальных усилий. Постоянное пребывание в эндорфиновом раю снижает метаболизм мозга и постепенно приводит к нирване — масштабному развитию склеротических явлений в сосудах головного мозга. Для обладателей такого мозга это не очень заметно, поскольку вместе со снижением интеллектуального потенциала повышается уровень самооценки. Обычно параллельно развивается склонность
В условиях полной праздности мозг продолжает работать по тем же физиологическим законам, что и у трудоголика. Разница состоит в скорости процессов и метаболических последствиях. Как в состоянии временного покоя, так и при активной интеллектуальной
работе между нейронами ежедневно формируются синаптические связи. Обычно в день у каждого нейрона образуется 2 - 3 синапса — новые связи с другими клетками. Это достаточно консервативный параметр, и для его изменения необходимы особые условия, которые будут описаны ниже. Следовательно, и в праздном, и в активно работающем мозге связи между нейронами образуются и разрушаются постоянно. Этот морфогенетический процесс лежит в основе памяти и мышления. Он не останавливается до самой смерти человека, хотя может изменяться в небольших пределах, что зависит от объёма крови, проходящей через мозг.
Если мозг активно работает, то кровообращение усиливается, а энергетический избыток направляется как на поддержание метаболизма, так и на морфогенез отростков нейронов. При длительном поддержании такого состояния могут наступить реальные физиологические изменения. Тогда вместо 2 - 3 синапсов может образоваться 4 - 5, что неимоверно расширяет возможности мозга. Это легко понять из простых арифметических вычислений. Если на каждый нейрон коры большого мозга придётся по паре новых синапсов в день, то это уже около 23 млрд дополнительных контактов, которые составляют огромный творческий потенциал. Вопрос заключается в том, как данный потенциал использовать каждый день. Экономия энергетических расходов мозга так бессмысленно приятна, что может помочь растратить любой запас гениальности и таланта.
К сожалению, долго работать в напряжённом состоянии мозг не любит и не может. Он находит изощрённые способы снижения сомнительных энергетических затрат и стремится вернуться в лоно праздного счастья. При длительном и упорном насилии над собственным мозгом порой удаётся достичь некоторых заметных результатов. Визуализировать их могут некоторые любознательные патологоанатомы, правда уже после смерти упорного интеллектуала.
Примером может быть работа, опубликованная Б.К. Гиндце в «Клиническом архиве гениальности и одарённости» В.Г. Сегалина за 1925 год. В этой работе
известный анатом сравнил сосуды мозга профессора математики 1-го Московского университета Павла Алексеевича Некрасова и простого обывателя. Морфологические различия между системами сосудов двух людей с разными профессиями оказались вполне ожидаемыми. Математик, который регулярно занимался интеллектуальной работой, стимулировал кровообращение своего мозга. Без такого принуждения ленивый мозг снижает кровоснабжение нейронов в 1,5 - 2 раза. Профессор регулярно эксплуатировал свой мозг, продлевая жизнь нейронов стимуляцией кровообращения. В конечном счёте это привело к тому, что естественная возрастная гибель нейронов была снижена, а здравомыслие не изменяло профессору до конца дней. Аналогичная развитость и возрастная сохранность кровообращения мозга отмечались Б.К. Гиндце у поэтов В. Брюсова и О. Туманьяна, профессоров Н.А. Бернштейна и Д.Н. Анучина. Для людей интеллектуального труда характерно более, чем у обывателей, развитое кровообращение, которое сказывается не только на рассудке.
У большинства творческих эксплуататоров собственного мозга до старческого возраста сохраняются высокая потенция и склонность к сексуальным удовольствиям. Это неудивительно, поскольку соматосенсорные области, контролирующие половые органы, расположены в огромных полях коры на медиальной поверхности полушарий. При интеллектуальных нагрузках их кровоснабжение улучшается, а сосудистые склеротические процессы немного замедляются. Эту заманчивую перспективу рассудочного старения портят некоторые особенности метаболизма мозга, о которых не стоит забывать. Общее усиление интеллектуальных нагрузок полезно, но старит нейроны. В мозге быстро накапливаются невыводимые из цитоплазмы нейронов продукты метаболизма, маркирующие их преждевременное старение. Только по накоплению одного из них — липофусцина — можно судить о возрасте человека даже по микроскопическому анализу нескольких нейронов. Если смириться с этими небольшими
потерями, то можно попытаться продлить рассудочную жизнь мозга.
К сожалению, парадоксы кровообращения мозга на этом не исчерпываются. Если простодушный читатель надеется, что, стимулируя кровообращение изучением языков и игрой в большой теннис, он добьётся сохранного старения своего мозга, то он горько ошибается. Безусловно, такие приятные развлечения улучшают соматические функции организма, но головной мозг — намного более привередливая система.
Третий парадокс состоит в том, что скорость кровообращения в разных областях мозга постоянно изменяется. Это означает, что, занимаясь физическими упражнениями, человек стимулирует кровоток в моторных и сенсомоторных областях, а не во всём мозге сразу, как предполагалось ранее. Кровеносная система обеспечивает адаптивное динамическое кровоснабжение головного мозга. При повышении нагрузки на мозг скорость и объём движущейся крови в одних областях увеличиваются, а в других — уменьшаются. В тех областях мозга, которые испытывают максимальную функциональную нагрузку, усиливается кровоток, а не задействованные в данный момент области сохраняют исходное кровообращение. По этой причине добиться системного увеличения кровотока во всём мозге при помощи физической нагрузки скелетной мускулатуры крайне затруднительно. В такой ситуации высокий метаболизм будет поддерживаться только в сенсомоторных областях. В остальной части мозга кровоток будет сохраняться на относительно низком уровне.
На этом принципе построены попытки исследовать мозг живого человека при помощи функциональной магнитно-резонансной (functional magnetic resonance imaging, фМРТ) и позитронно-эмиссионной томографии (positron emission tomography, ПЭТ) мозга с применением радионуклидных технологий. При всей технической сложности суть этих методов функциональной томографии довольно проста. фМРТ базируется на уникальной связи между течением крови и присутствием кислорода в одних и тех же отделах головного
мозга при активизации нейронов. Например, если человек начинает всматриваться в некий объект, то активизируются зрительные поля коры, расположенные в затылочной доле. Это выражается в том, что в зрительных полях увеличивается кровоток и возрастает количество кислорода (Cooper et al., 1975).
Отличия ПЭТ состоят в том, что при помощи похожих методов происходит сканирование мозга, предварительно насыщенного соединениями, содержащими короткоживущие радионуклиды кислорода (150), углерода (150), углерода (11С), фтора (18F) и азота (13N). Они имеют очень короткий период полураспада, но позволяют проанализировать места связывания соединений (содержащих эти радионуклиды) в функционально нагруженных областях мозга. Поскольку основным метаболитом нейронов являются сахара, в экспериментах чаще всего используют меченную радионуклидами глюкозу (18F-2-fluoro-2-deoxy-D-glucose, FDG) или Н2150.
Применение обоих методов для анализа функциональных областей мозга весьма сходно. Обычно участнику эксперимента предлагают думать на определённую тему, производить математические операции, слушать звуки или слова, читать текст, испытывать обонятельные или вкусовые ощущения. В это время производится фМРТ- или ПЭТ - сканирование, которое позволяет установить наиболее возбуждаемые области головного мозга. Самые активные зоны мозга связывают радиоизотопы или меняют скорость кровотока, что рассматривается как признак локализации функций. Понятно, что активизируются и первичные, и вторичные центры мозга. Особенно расплывчаты границы функциональных полей при решении ассоциативных задач. К ним относятся вычисления, понимание слов и текста, абстрактных изображений и восприятие звуков. Тем не менее даже такие задачи начинают ставиться в наблюдениях на добровольцах или пациентах с заболеваниями нервной системы.