Чтение онлайн

на главную - закладки

Жанры

Нобелевские премии. Ученые и открытия
Шрифт:

В химии классическая термодинамика исследует химическое равновесие и вообще равновесные процессы. Однако уже в 20-е годы появились первые работы по термодинамике неравновесных процессов.

В 1929 г. на встрече скандинавских ученых в Копенгагене молодой американский исследователь Ларе Онсагер (норвежец по происхождению) сообщил о полученных им соотношениях, выражающих зависимость электропроводности, активности и некоторых других характеристик электролита от его концентрации (уравнения Онсагера). В 1931 г. в известном журнале Physical Review им была опубликована статья, в которой рассматривались различные термодинамические процессы, такие, как перенос теплоты, диффузия, смешение, растворение веществ и т. д. Описывающие эти процессы уравнения имеют определенные коэффициенты, между которыми существует взаимозависимость. Это и есть теорема Онсагера — основа феноменологической термодинамики неравновесных процессов.

Работы

Онсагера далеко опередили свое время. Лишь в конце 40-х годов начал проявляться интерес к термодинамике необратимых процессов, и это в значительной степени связано с исследованиями бельгийского ученого Ильи Пригожина.

Он родился в Москве в 1917 г., но вскоре семья переехала в Бельгию. Закончил Брюссельский университет и с 1947 г. заведует там кафедрой химической физики. В том же году он опубликовал свою первую монографию по термодинамике необратимых процессов, которая сыграла огромную роль в дальнейшем развитии этой области науки.

Пригожий выдвинул ряд оригинальных идей, в том числе принцип локального равновесия. Согласно этому принципу, в неравновесной системе могут быть области, находящиеся в квазиравновесном состоянии. Другое положение, получившее название теоремы Пригожина, гласит, что в стационарном состоянии при фиксированных внешних параметрах скорость производства энтропии в термодинамической системе Минимальна. Этот вывод очень важен для биологии.

Принцип локального равновесия, теорема Пригожина и соотношение взаимности Онсагера положены в основу современной термодинамики необратимых процессов. Значение этой науки особенно возросло в 60-е годы. С учетом этого Ларе Онсагер был удостоен Нобелевской премии по химии в 1968 г., а его коллега Илья Пригожий стал лауреатом этой премии в 1977 г.

Химическая связь

В 1800 г. английский исследователь Уильям Николсон, сконструировав вместе с А. Карлейлем электрическую батарею, разложил воду с помощью электрического тока. Так впервые была продемонстрирована связь между химическими и электрическими взаимодействиями. Но только через столетие была создана удовлетворительная теория, описывающая природу химической связи.

Открытие того факта, что электрический ток может вызывать химические изменения, в начале XIX в. было поистине сенсацией. В 1819 г. известный шведский химик Йене Якоб Берцелиус использовал его в своей теории, которая утверждала, что в атомах различных элементов преобладает либо положительный, либо отрицательный электрический заряд и связь атомов в соединения обусловлена силами электростатического притяжения. Теория Берцелиуса была проста и казалась вполне логичной, однако вскоре появились данные, которые она не могла объяснить, и хорошая идея Берцелиуса была поставлена под сомнение. Трудности возникли при попытках объяснить, каким образом связываются одноименные атомы, в частности в двухатомных молекулах газов. Обнаружилось также, что атомы одних и тех же элементов в одних химических реакциях как бы имеют положительный электрический заряд, а в других — отрицательный. Главный удар был нанесен органической химией. Когда Берцелиус создавал свою теорию, этой науки, по существу, еще не было, и ее развитие привело к окончательному отказу от его идеи.

Как мы теперь знаем, шведский ученый фактически открыл один из видов химической связи, который через сто лет получил название ионной связи. Здесь особенно отчетливо проявляется электрический характер химической связи, поэтому-то она и была открыта раньше других. Электрическая природа остальных видов химической связи не столь очевидна; почти до самого конца XIX в. ученые предпочитали не высказываться на эту тему или ограничивались весьма туманными предположениями.

Открытие процесса электролиза положило начало электрохимии. Ее основой служит тот факт, что под действием электрического тока молекулы раствора химического соединения распадаются на ионы отдельных веществ, входящих в состав соединения [10] . В 80-е годы прошлого века шведский ученый Сванте Август Аррениус доказал, что процесс разложения на ионы (так называемая электролитическая диссоциация) возможен и без воздействия электрического тока. Эти выводы были подкреплены исследованиями Вант-Гоффа осмотического давления: оно возникает, когда растворы различной концентрации разделены полупроницаемой мембраной, через которую проникают молекулы растворителя и не проникают молекулы растворенного вещества.

10

Теорию электролиза разработал в 1805 г. прибалтийский ученый Теодор Гротгус. Основным постулатом теории была идея о полярности молекул, инициируемой электрическим током или возникающей при взаимной электризации атомов. Гротгус установил также, что

свет, поглощенный веществом, может вызывать в нем химическую реакцию, — Прим, ред.

Первые измерения осмотического давления провел в 1877 г. Вильгельм Пфеффер, а вскоре Вант-Гофф дал объяснение этому процессу. Данные об осмотическом давлении имели большое значение для исследования атомов и молекул, так как позволили применить закон Авогадро к веществам, не находящимся в газообразном состоянии. Это дало возможность определять молекулярную массу растворенных соединений.

Однако теория Вант-Гоффа не «работала» в случае таких веществ, как сильные кислоты, щелочи и их соли. При измерении осмотическое давление у этих веществ оказывалось значительно выше, чем следовало из предполагаемого числа молекул. Именно этот факт подтвердил, что молекулы раствора распадаются на ионы. За исследования по осмотическому давлению и химической динамике Якоб Вант-Гофф был первым удостоен в 1901 г. Нобелевской премии по химии. Однако этот ученый наиболее известен своими теориями пространственного строения молекул, которые положены в основу стереохимии.

Сванте Аррениус получил Нобелевскую премию по химии в 1903 г. за теорию электролитической диссоциации, которая объяснила электропроводность раствора и ее связь с химическим сродством элементов. Это означало как бы возврат к представлению об электрической природе сил, связывающих атомы, которое стало преобладающим в начале нашего столетия.

Сразу же после открытия электрона начали предприниматься попытки связать его с проблемой химической связи. Автором первой теории был сам Джозеф Джон Томсон; его идеи развил Йоханнес Штарк, который ввел понятие валентных электронов, связывая валентность элемента с числом электронов на периферии атомов. Планетарные модели атома, предложенные Резерфордом и Бором, сразу же были использованы Гильбертом Ньютоном Льюисом и Вальтером Косселем [11] для объяснения природы химических связей. Льюис выдвинул гипотезу электронных пар, которые становятся «общей собственностью» связанных атомов. Он развил положение о том, что наиболее устойчивые группировки характерны для внешних электронов атомов инертных газов. Их два у гелия и восемь — у остальных газов этой группы. У других химических элементов число валентных электронов меньше, и они стремятся пополнить их число, чтобы образовать такую же конфигурацию, как у инертных газов. Согласно представлениям Косселя, атомы либо присоединяют, либо отдают электроны, приобретая при этом соответственно отрицательный или положительный заряд, в результате чего связываются в молекулы.

11

В. Коссель — сын лауреата Нобелевской премии биохимика Альбрехта Косселя. — Прим. ред.

Льюис и Коссель были светилами в своей области, но их представления не совсем соответствовали новейшим достижениям физики. Следующий шаг в развитии теории химической связи был связан с применением идей квантовой теории. Первую попытку такого рода предприняли Фриц Лондон и Вальтер Гайтлер. В 1927 г. они опубликовали свои работы, положившие начало квантовой химии.

В соответствии с квантовыми представлениями уже нельзя считать, что электрон движется по определенной орбите. Это обусловлено соотношением неопределенностей Гейзенберга, в соответствии с которым координаты микрочастиц не могут быть точно определены. Поэтому вместо электронной орбиты следует говорить о своего рода электронном «облаке» — электрон как бы «размазан» в пространстве, и вероятность его нахождения в той или иной области характеризуется квадратом волновой функции.

В 30-е годы значительных успехов в квантовомеханическом толковании химических связей добился американский ученый Лайнус Карл Полинг. Он развил и усовершенствовал так называемый метод атомных орбиталей, используя его для объяснения структуры сложных молекул. Свои идеи он изложил в известной монографии, посвященной химическим связям. Наибольшую известность получили опыты Полинга, касающиеся исследования атомной структуры молекул белков. Он проводил эти опыты в конце 40-х годов, а в 1954 г. был удостоен Нобелевской премии по химии за развитие теории химических связей и ее применение для исследования структуры молекул белков.

В то время как Гайтлер, Лондон, Полинг и другие ученые исследовали электронную структуру атома и (Применяли полученные результаты для объяснения химической связи, Роберт Малликен пошел обратным путем. Создав метод молекулярных орбиталей, он ввел представление о молекуле как о целостной системе, состоящей из нескольких положительных ядер, окруженных общими электронными «облаками». В сущности, оба таких подхода преследуют одну цель — найти максимально приближенное математическое описание конфигурации электронных структур в молекулах.

Поделиться:
Популярные книги

Действуй, дядя Доктор!

Юнина Наталья
Любовные романы:
короткие любовные романы
6.83
рейтинг книги
Действуй, дядя Доктор!

Убийца

Бубела Олег Николаевич
3. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.26
рейтинг книги
Убийца

Краш-тест для майора

Рам Янка
3. Серьёзные мальчики в форме
Любовные романы:
современные любовные романы
эро литература
6.25
рейтинг книги
Краш-тест для майора

Найди меня Шерхан

Тоцка Тала
3. Ямпольские-Демидовы
Любовные романы:
современные любовные романы
короткие любовные романы
7.70
рейтинг книги
Найди меня Шерхан

Мастер...

Чащин Валерий
1. Мастер
Фантастика:
героическая фантастика
попаданцы
аниме
6.50
рейтинг книги
Мастер...

Полковник Империи

Ланцов Михаил Алексеевич
3. Безумный Макс
Фантастика:
альтернативная история
6.58
рейтинг книги
Полковник Империи

Протокол "Наследник"

Лисина Александра
1. Гибрид
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Протокол Наследник

Магия чистых душ

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.40
рейтинг книги
Магия чистых душ

Бальмануг. Невеста

Лашина Полина
5. Мир Десяти
Фантастика:
юмористическое фэнтези
5.00
рейтинг книги
Бальмануг. Невеста

Идеальный мир для Лекаря 15

Сапфир Олег
15. Лекарь
Фантастика:
боевая фантастика
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 15

Газлайтер. Том 16

Володин Григорий Григорьевич
16. История Телепата
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Газлайтер. Том 16

Охота на эмиссара

Катрин Селина
1. Федерация Объединённых Миров
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Охота на эмиссара

Live-rpg. эволюция-5

Кронос Александр
5. Эволюция. Live-RPG
Фантастика:
боевая фантастика
5.69
рейтинг книги
Live-rpg. эволюция-5

Неестественный отбор.Трилогия

Грант Эдгар
Неестественный отбор
Детективы:
триллеры
6.40
рейтинг книги
Неестественный отбор.Трилогия