Чтение онлайн

на главную

Жанры

Новые аквариумные растения
Шрифт:

Во-вторых, газ CO2 может быть введен в аквариум. Это – более дорогое удовольствие и при выполнении ненадлежащим образом может приводить к гибели рыб. Однако этот метод становится единственно возможным при культивировании растений полностью неспособных использовать гидрокарбонат (например, виды рода Cabomba).

Аквариумист должен знать, что растения состоят из углерода [C] на сорок три процента сухого веса, а в аквариуме без подачи углекислого газа (CO2) его настолько мало, что им просто негде взять основной строительный материал для своих клеток.

Растения, используя световую энергию, кислород, углерод и водород осуществляют фотосинтез.

С помощью фотосинтеза углеводы, например глюкоза, получается из двуокиси углерода (углекислого газа) по реакции:

CO2 + 6H2O + 674 ккал –> C6H12O6 + 6H2O.

Как видно из формулы это невозможно без достаточного количества CO2.

По этой формуле также видно, что процесс фотосинтеза растений требует определенного уровня энергии света . Если свет недостаточно яркий, фотосинтез происходить не будет. При уровне освещенности, близком к оптимальному (1), фотосинтез будет происходить все быстрее.

Данные исследований фирмы Тропика, крупнейшей компании по выращиванию аквариумных растений, показали, что в природе, при достаточном количестве питательных веществ, углекислый газ вместе со светом являются главными лимитирующими факторами роста растений. При условии насыщения воды всеми питательными веществами. В компании «Тропика» две недели наблюдали результаты по выращиванию риччии, и получили следующие результаты:

– нет подачи углекислого газа плюс низкая освещенность – рост растений равен нулю (за две недели почти никакой прибавки массы листьев),

– при малой подаче углекислого газа и низкой освещенности рост увеличивается в четыре раза,

– при малой подаче углекислого газа и высокой освещенности, рост усиливается в 6 раз (на примере, ричии).

Даже средний уровень подачи CO2 в плохо освещенном аквариуме приводит к 2-х кратному усилению роста растений. Потому что может производиться больше хлорофилла без фатальных последствий для баланса энергии растения – растение тратит меньше энергии и ресурсов для извлечения CO2 из воды, и остается больше энергии для оптимизации переработки световой энергии в ткани растения. В результате, хотя не увеличивалась интенсивность освещения, растение может более эффективно использовать уже имеющийся свет. Очевидно, что выгода от увеличения интенсивности освещения и подачи углекислого газа превосходит эффект от повышения только одного из них.

Из вышеизложенных фактов следует что: интенсивность освещения должна соответствовать количеству подаваемого в аквариум углекислого газа и наоборот.

У большинства любителей растений, не владеющих методикой Nature Aquarium недостаток света, и отсутствует подача углекислого газа, поэтому темпы роста растений не высоки –один лист в неделю. Увеличив только свет, вы улучшите рост, но в этом случае возникает угроза появления водорослей. И только приведя освещенность в норму, и сделав подачу углекислого газа получите ускорение роста будет в несколько раз.

Чтобы обеспечить оптимальный фотосинтез водных растений

концентрация свободного углекислого газа в воде должна быть порядка 15-30мг/л, при этом нельзя превышать предельно допустимую концентрацию для рыб 30мг/л.

Низкая растворимость углекислого газа в воде, относительно толстый недвижимый слой и высокая концентрация, необходимая для обеспечения фотосинтеза подсказали одному ученому утверждение: "Для пресноводных растений, естественный уровень соединений углерода в воде является главным сдерживающим фактором фотосинтеза…" [3]

При быстром росте растений после начала подачи CO2 очень скоро начнут проявляться признаки нехватки питательных веществ, так как растения быстро использую все железо, калий, магний и прочие микроэлементы. Так что подачу углекислого газа можно использовать в сочетании с ежедневным внесением удобрений.

5.1 Углекислый газ и кислород

Вопреки распространенному заблуждению, углекислый газ не вытесняет из воды кислород, а наоборот, и не ограничивает его доступность для дыхания рыб – они успешно сосуществуют. Наоборот – благодаря хорошему росту растений концентрация кислорода днем, когда растения активно синтезируют, достигает 11 мг/л, что намного выше 100% границы насыщения при температуре воды 24С, и к утру падает только до 8,0 мг/л. Для нормальной жизнедеятельности рыб достаточна концентрация растворенного кислорода в воде 5 мг/л (насыщение 60%).

Если в аквариуме до 200 литров нормально буферизированная вода (с dKH=2-4), и он не перенаселен рыбами, содержание кислорода к утру остается достаточно высоким (8мг/л), а pH более стабилен, если подачу CO2 не выключать на ночь.

 5.2 Свет и углекислый газ

Интенсивность освещения и подача CO2 должны соответствовать друг другу.

Исследования фирмы Tropica подтверждают то, что говорил Takashi Amano на сайте Aqua Journal:

"Ватты света должны соответствовать количеству подаваемого CO2. Если свет слишком интенсивный и растения не получают достаточного количества CO2, сильный свет принесет больше вреда чем пользы."

Если много света и недостаточно CO2, растения не будут активно расти и появятся водоросли. Вводимые жидкие удобрения еще больше усугубят проблему. С другой стороны, если недостаточно света, а CO2 подается много, концентрация CO2 может превысить допустимый предел и станет токсичной для рыб и беспозвоночных (30мг/л).

Некоторые растения более светолюбивые, чем другие, например длинностебельные с очень тонкими листьями. Требуя больше света они, соответственно, требуют и большей подачи CO2 ! Как говорит опять же Takashi Amano, «нет сложных и простых растений, просто есть светолюбивые и тенелюбивые. Кроме разного необходимого количества света и CO2 они ничем не отличаются».

Следует с самого начала создания аквариума определить мощность флуоресцентных ламп и подачу CO2, чтобы в последующем эти факторы не уменьшали рост растений – будет проще определение их потребности в других питательных веществах.

Поделиться:
Популярные книги

Кодекс Крови. Книга III

Борзых М.
3. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга III

Идеальный мир для Лекаря 21

Сапфир Олег
21. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 21

Неудержимый. Книга VIII

Боярский Андрей
8. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
6.00
рейтинг книги
Неудержимый. Книга VIII

Бальмануг. Студентка

Лашина Полина
2. Мир Десяти
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Бальмануг. Студентка

Энфис 2

Кронос Александр
2. Эрра
Фантастика:
героическая фантастика
рпг
аниме
5.00
рейтинг книги
Энфис 2

Мастер Разума VII

Кронос Александр
7. Мастер Разума
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер Разума VII

Попаданка

Ахминеева Нина
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Попаданка

Опер. Девочка на спор

Бигси Анна
5. Опасная работа
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Опер. Девочка на спор

Возвращение

Кораблев Родион
5. Другая сторона
Фантастика:
боевая фантастика
6.23
рейтинг книги
Возвращение

Волк 4: Лихие 90-е

Киров Никита
4. Волков
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Волк 4: Лихие 90-е

Бальмануг. (Не) Любовница 2

Лашина Полина
4. Мир Десяти
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Бальмануг. (Не) Любовница 2

Невеста вне отбора

Самсонова Наталья
Любовные романы:
любовно-фантастические романы
7.33
рейтинг книги
Невеста вне отбора

Большая игра

Ланцов Михаил Алексеевич
4. Иван Московский
Фантастика:
альтернативная история
5.00
рейтинг книги
Большая игра

Идеальный мир для Лекаря 17

Сапфир Олег
17. Лекарь
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 17