Чтение онлайн

на главную - закладки

Жанры

О чем рассказывает свет

Суворов Сергей Георгиевич

Шрифт:

В конкретном случае взаимодействия токов и зарядов он измерил электрические и магнитные напряжения, учел величины, характеризующие электрические и магнитные свойства пространства, лишенного вещественной среды («пустоты»). Подставив все эти данные в свои уравнения, он вычислил скорость распространения электромагнитной волны. По его подсчетам, она оказалась равной 300 тысячам километров в секунду, т. е. равной скорости света! А ведь в свое время скорость света определяли чисто оптически: расстояние, пройденное световым сигналом от источника до приемника, делили на время его движения; никто при этом и думать не мог ни об электрических и магнитных напряженностях, ни об электрических и магнитных свойствах

среды.

Случайно ли такое совпадение скоростей?

Максвелл сделал смелое предположение: скорость света и скорость электромагнитных волн одинаковы потому, что свет имеет ту же природу — электромагнитную.

Электромагнитная природа света

Теория Максвелла была разработана в 60-х годах. В 1888 году немецкий физик Генрих Герц (1857—1894) получил электромагнитные волны длиной в 9 метров. Они были получены с помощью искрового разрядника, схема которого как раз и была показана на рис. 24.

Теория Максвелла была практически доказана: электромагнитные волны действительно существуют, и их можно возбуждать чисто техническими средствами.

В 1895 году русский физик Александр Попов (1859— 1906) изобрел радио — одно из величайших достижений науки и техники нашего времени. Попов особое внимание обратил на разработку приемника электромагнитных волн, на усиление посылаемых и принимаемых сигналов, для чего он впервые применил антенны, на использование электромагнитных волн в качестве сигналов для связи; с помощью электромагнитных волн он послал первую в мире радиограмму, на которой зрители могли прочитать имя Генриха Герца.

Изучая свойства световых волн и электромагнитных волн, физики пришли к выводу, что Максвелл был прав: природа их, действительно, одинакова. И те и другие волны распространяются с одинаковой скоростью, отражаются и преломляются по одним и тем же законам, дают такие же тени и огибания краев препятствий. Пожалуй, наиболее важным было установление того, что скорость распространения световых волн в различных средах совершенно так же зависит от электрических и магнитных свойств этих сред, как от этих свойств зависит и скорость распространения в них электромагнитных волн. В частности, для любых электромагнитных волн, как и для света, скорость в среде уменьшается по мере укорочения длины волны. Вот поэтому-то когда белый свет падает на грань стеклянной призмы под углом, он расщепляется на составные части; каждая волна, входящая в состав белого света, движется в стекле со своей скоростью: красное излучение быстрее, чем желтое, желтое— быстрее, чем зеленое и т. д., поэтому фронт волны каждого излучения по-своему меняет направление.

Свет — это те же электромагнитные волны, как и волны, получаемые от искрового разряда или каким-либо иным техническим путем. Оба типа волн отличаются лишь тем, что у них различна длина волны или частота. Световые волны, действия которых воспринимаются глазом, имеют длину от 4000 до 7500A, а радиоволны, с которыми работал Попов, — около 10 метров, т. е. в десятки миллионов раз больше.

Заметим, кстати, что изобретение Попова внесло принципиально новое отношение человека к такой области природы, как свет в широком смысле слова: ранее человек мог только пассивно возбуждать свет, теперь он научился модулировать его параметры, т. е. величины, его характеризующие. Но об этом скажем несколько позже.

Невидимый свет

Теперь мы можем говорить о свете в широком смысле слова, включающем в себя и невидимый свет. Впрочем, фактически физики с ним познакомились уже давно. Давно они замечали, что по обе стороны видимого светового спектра имеются какие-то невидимые излучения. Если за красным краем солнечного спектра поставить термометр, он

сильно нагревается. А за фиолетовым концом спектра термометр нагревается слабее, но зато сильно чернеют фотопластинки, более бурно протекают химические процессы.

Невидимые излучения за красным концом спектра назвали инфракрасными, а за фиолетовым концом — ультрафиолетовыми. После работ Максвелла, Герца, Лебедева и других стало ясно, что инфракрасные и ультрафиолетовые излучения — это также электромагнитные волны; длина волн у первых больше, чем у красного света, а у вторых меньше, чем у фиолетового.

Теория Максвелла по-новому осветила огромную область процессов природы — электромагнитных излучений. Конец XIX века ознаменован открытием многих групп излучений, составляющих по своей природе одну и ту же семью.

Выше было сказано, что Герц и Попов получали электромагнитные волны порядка 10 метров. Важно было установить, можно ли с помощью технических устройств получить излучения со все меньшей длиной волны и, наконец, сомкнуть их с теми излучениями, которые уже встречались в природе. В этом направлении шли исследования физиков.

В 90-х годах прошлого века русский физик П. Н. Лебедев (1866—1912) много работал над практическим доказательством электромагнитной природы света. Он создал вибратор, от которого получил самые короткие в то время волны—длиной в 6 миллиметров. Дальше техника получения коротких волн развивалась крайне медленно, встречались большие технические трудности. Это легко понять из следующих расчетов. Чтобы получить электромагнитные волны длиной в 10 метров (Герц, Попов), надо заставить электрические заряды колебаться с частотой в 30 миллионов циклов. Волны, полученные Лебедевым, уже требуют вибратора с частотой в 50 миллиардов циклов. Только в 1922 году советский физик А. А. Глаголева-Аркадьева изобрела «массовый излучатель», который излучал волны порядка десятых долей миллиметра. Благодаря ее работам спектр электромагнитных волн, получаемых от технических вибраторов, сомкнулся с инфракрасными излучениями.

Что же является излучателем более коротких электромагнитных волн — инфракрасных и еще более коротких? Колебания зарядов внутри молекул и атомов и их ядер. Световые излучения нам известны от природы, так как они воспринимаются нашим глазом. Другие же — были открыты физиками при помощи различных приборов.

В 1895 году немецкий физик Вильгельм Рентген (1845—1923) обнаружил, что поток быстро летящих электронов, ударяясь о стекло или металлическую пластинку, вызывает появление невидимых излучений. Излучения были замечены случайно: они упали на бумагу, покрытую особым веществом — платино-цианистым барием, и бумага в темноте засветилась. Так были открыты «рентгеновские лучи», с помощью которых в настоящее время «просвечивают» внутренние органы человека. Длины волн рентгеновских излучений лежат в промежутке примерно от десятых долей до сотни ангстрем. По длине волны они следуют непосредственно за ультрафиолетовыми излучениями.

Вскоре после открытия рентгеновских излучений в природе были найдены излучения с еще более короткой длиной волны, так называемые гамма-излучения. Их испускают радиоактивные вещества.

Шкала электромагнитных излучений

Таким образом, шкала излучений, обнаруженных человеком в природе, оказалась очень широкой. Если идти от наиболее длинных волн к коротким, мы увидим следующую картину (рис. 27). Сначала идут радиоволны, они самые длинные. В их же число входят и излучения, открытые Лебедевым и Глаголевой-Аркадьевой; это — ультракороткие радиоволны. Далее последовательно идут инфракрасные излучения, видимый свет, ультрафиолетовые излучения, рентгеновские и, наконец, гамма-излучения.

Поделиться:
Популярные книги

Сильнейший ученик. Том 1

Ткачев Андрей Юрьевич
1. Пробуждение крови
Фантастика:
фэнтези
боевая фантастика
аниме
5.00
рейтинг книги
Сильнейший ученик. Том 1

Сердце Дракона. нейросеть в мире боевых искусств (главы 1-650)

Клеванский Кирилл Сергеевич
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.51
рейтинг книги
Сердце Дракона. нейросеть в мире боевых искусств (главы 1-650)

Два лика Ирэн

Ром Полина
Любовные романы:
любовно-фантастические романы
6.08
рейтинг книги
Два лика Ирэн

Сыночек в награду. Подари мне любовь

Лесневская Вероника
1. Суровые отцы
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Сыночек в награду. Подари мне любовь

Игра топа

Вяч Павел
1. Игра топа
Фантастика:
фэнтези
6.86
рейтинг книги
Игра топа

Генерал Скала и ученица

Суббота Светлана
2. Генерал Скала и Лидия
Любовные романы:
любовно-фантастические романы
6.30
рейтинг книги
Генерал Скала и ученица

Огненный князь 2

Машуков Тимур
2. Багряный восход
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Огненный князь 2

Ты не мой Boy 2

Рам Янка
6. Самбисты
Любовные романы:
современные любовные романы
короткие любовные романы
5.00
рейтинг книги
Ты не мой Boy 2

На руинах Мальрока

Каменистый Артем
2. Девятый
Фантастика:
боевая фантастика
9.02
рейтинг книги
На руинах Мальрока

Сфирот

Прокофьев Роман Юрьевич
8. Стеллар
Фантастика:
боевая фантастика
рпг
6.92
рейтинг книги
Сфирот

Газлайтер. Том 9

Володин Григорий
9. История Телепата
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Газлайтер. Том 9

Школа. Первый пояс

Игнатов Михаил Павлович
2. Путь
Фантастика:
фэнтези
7.67
рейтинг книги
Школа. Первый пояс

Последний попаданец 12: финал часть 2

Зубов Константин
12. Последний попаданец
Фантастика:
фэнтези
юмористическое фэнтези
рпг
5.00
рейтинг книги
Последний попаданец 12: финал часть 2

Я тебя не отпускал

Рам Янка
2. Черкасовы-Ольховские
Любовные романы:
современные любовные романы
6.55
рейтинг книги
Я тебя не отпускал