О чем рассказывает свет
Шрифт:
Частота фиолетового излучения равна 750 тысячам миллиардов, или 7,5·1014 циклам. Она, как видим, больше, чем у красного излучения, почти в два раза.
Итак, физики получили две характеристики одного и того же цветного луча: длину волны и частоту.
В этой книжке мы будем применять иногда одну характеристику, а иногда другую. Переход же от одной характеристики к другой очень прост.
От призмы к спектрографу
Опыты с призмой показали, что как бы мало ни отличался один луч света от другого по частоте световой волны, он по-своему преломляется в призме и потому занимает в спектре свое, определенное
Этот факт и использовал немецкий физик Густав Кирхгоф (1824—1887) в конце 50-х годов прошлого века, когда потребовалось выяснить, отличается ли по цвету пламя, окрашенное парами стронция, от пламени, окрашенного парами лития.
Установка Ньютона была усовершенствована. У Ньютона она была громоздкой, начиналась со щели в ставне, а кончалась цветной полосой на противоположной стене. Теперь вся установка была смонтирована в виде небольшого переносного прибора, состоящего из призмы и трех оптических трубок (рис. 15). Этот прибор и получил название спектроскопа.
Рис. 15. Общая схема спектроскопа (рисунок взят из книга Д. И. Менделеева «Основы химии»). Призма А находится в центре столика. Перед трубкой Б ставят горелку с окрашенным пламенем. В трубку В наблюдают. В трубке Г находится освещенная шкала, которая отражается от боковой грани призмы, как от зеркала, и также видна через трубку В
Посмотрим, как он работает. Пусть в окрашенном пламени имеется два цвета, например, красный и фиолетовый. Лучи от этого пламени попадают в щель М, прорезанную в заслонке А на одной из трубок спектроскопа (рис. 16). Пройдя щель, лучи падают расходящимся пучком на линзу (двояковыпуклое очковое стекло) Б. Эта линза поставлена так, что лучи, пройдя ее, дальше идут параллельно и попадают на призму В. До призмы все лучи, независимо от цвета, идут по одному направлению. На гранях призмы красные и фиолетовые лучи преломляются по-разному. После призмы они идут разделенными. На рис. 16 показано, как из призмы В вышли два цветных пучка и упали на линзу Г. Линза Г собирает каждый цветной пучок лучей: красный — в точке К, фиолетовый — в точке Ф.
Надо помнить, что на рисунке все показано в разрезе: щель в заслонке А нарисована в виде точки М, а на самом деле она идет под прямым углом к плоскости бумаги; точки К и Ф также на самом деле не точки, а цветные линии, — это изображения щели А, которые образуются разными по цвету лучами. Такие линии рассматриваются сквозь увеличительную линзу Д.
На изображения щелей, т. е. на линии К и Ф, накладывается еще изображение особой шкалы, помещенной в третьей трубке Г (рис. 15).
Рис. 16. Ход лучей в спектроскопе
Шкала заранее проградуирована, т. е. заранее промерено, какой частоты излучение падает на изображение любого ее деления. Такой прибор называют спектрографом. Работа с прибором упростилась: достаточно взглянуть в трубку спектрографа — и отсчет по шкале показывает, каковы частоты излучений (или длины волн), испускаемых источником света.
Вскоре физики еще более усовершенствовали спектрограф: в зрительной трубке был поставлен фотоаппарат. Спектры уже не наблюдают непосредственно глазом, их фотографируют, а фотографии тщательно изучают.
Так в XIX веке родился замечательный прибор — спектрограф.
Свет рассказывает о составе веществ
Химики заводят спектральную книгу
Теперь ученые получили в свои руки мощное орудие исследования света — спектрограф. Они стали рассматривать через этот прибор пламя горелки, окрашенное парами различных металлов—натрия, калия, лития и других.
Спектры окрашенного пламени представляли собой любопытную картину. В разных частях шкалы на черном фоне загорались цветные линии. У натрия загорелась всего только одна линия — желтая; позднее в более мощный спектроскоп физики рассмотрели, что на самом деле это две, очень близко расположенные линии 5890A и 5896A. У калия были три линии: две красные рядом друг с другом и фиолетовая вдалеке от них.
Такие спектры из отдельных линий были названы линейчатыми (см. приложение II; две желтые линии натрия и две красные линии калия на рисунке сливаются в одну).
С помощью нового прибора легко был решен вопрос: чем отличается малиново-красное пламя раскаленных паров лития от малиново-красного пламени паров стронция. В спектроскоп было видно, что спектр лития состоит из двух линий: красной — 6708A[1] и оранжевой — 6108A, а спектр стронция состоит из многих линий, среди которых есть фиолетовая — 4077A, несколько голубых — 4872A и другие, несколько зеленых — 5257A и другие, несколько желтых — 5504A и другие и красная — 6410A. В обоих спектрах самые яркие линии — красные; потому-то для глаз пламя кажется окрашенным одинаково и парами лития, и парами стронция.
Химики испытали не только раскаленные пары металлов, но и пары других веществ и нашли, что каждое вещество, если только его можно превратить в раскаленный газ, испускает свой особенный спектр. Вскоре был выведен общий закон: раскаленные пары каждого вещества испускают спектр излучений, свойственных только этому веществу.
Ученые решили определить спектры, испускаемые каждым химическим элементом, и занести эти спектры в особую спектральную книгу. Если кому-нибудь понадобится узнать состав какого-либо сложного вещества, достаточно рассмотреть спектр этого вещества через спектроскоп или, еще лучше, заснять его с помощью спектрографа и сравнить со спектрами в справочной спектральной книге.
Началась упорная работа. Справочная спектральная книга быстро заполнялась. Скоро ученые установили и внесли в спектральную книгу спектры всех известных химических элементов. С помощью спектрографов физики и химики исследовали спектры и установили состав минералов, золы, клеток растений, крови человека; определили, какие вещества уходят с заводов вместе с дымом и отбросами производства. Они узнали также состав многих не исследованных до того химических соединений и смесей.
Начало всей этой работе по исследованию спектров излучений различных веществ положил упомянутый выше немецкий физик Кирхгоф.
Почему каждый элемент испускает излучение не одной частоты (длины волны), а целый спектр, т. е. набор излучений многих частот (длин волн), никто пока еще не знал. Это было принято как факт, смысл которого был раскрыт много позднее. Об этом мы расскажем в других главах книжки.
Спектрограф обнаруживает неизвестные элементы
Спектрограф стал незаменимым помощником химика.