Об интеллекте
Шрифт:
Без глубинного объяснения того, в каком направлении вести исследования, ученым в области нейронаук не следует больше продолжать пытаться объединить все имеющиеся детали в согласованную картину. Мозг невероятно сложный, обширный и устрашающий клубок нервных клеток. На первый взгляд он похож на стадион, полный приготовленных спагетти. Так же его можно описать, как кошмар электрика. Но при более близком и аккуратном рассмотрении мы увидим, что мозг — не беспорядочная куча. В нем много структурной организации — но слишком много для того, чтоб можно было надеяться постичь интуитивно его работу как целого, точно также мы могли бы увидеть, как осколки разбитой вазы собираются обратно вместе. Наша неудача не от недостатка данных или даже правильной части данных; все что нам нужно — это смена перспективы. С правильной моделью детали станут значимыми и управляемыми. Рассмотрим следующую причудливую аналогию, чтоб ухватить суть того,
Вообразите, что тысячелетия спустя человечество пришло к своему закату, и исследователи из удаленных внеземных цивилизаций приземляются на Землю. Они хотят понять, как мы жили. В особенности они озадачены сетью наших дорог. Для чего эти причудливые искусные структуры? Они начинают классифицировать все, и со спутников и с земли. Они дотошные археологи. Они записывают расположение каждого случайного фрагмента асфальта, каждый дорожный указатель, который опрокинулся и был унесен под откос эрозией, любую деталь, которую им удается найти. Они замечают, что некоторые дорожные сети отличаются от других; в некоторых местах они ветреные, узкие и в основном случайно ориентированные, в других — в виде красивой периодической сетки, в некоторых участках они становятся плотными и идут на сотни миль через пустыню. Они собирают горы деталей, но эти детали ничего не значат для них. Они продолжают собирать еще больше деталей в надежде найти какие-то новые данные, которые объяснят все. Они остаются в тупике надолго.
Это только до тех пор, пока они не скажет, «Эврика! Мне кажется, я вижу… эти создания не могли телепортировать сами себя, как можем мы. Они вынуждены были путешествовать с места на место, возможно на мобильных платформах хитрой конструкции». С этой точки зрения многие детали становятся на свои места. Маленькие извилистые сети улиц остались с ранних времен, когда средства передвижения были очень медленными. Широкие длинные дороги были сделаны для путешествий на длинные дистанции на высоких скоростях, предполагается, наконец, объяснение, для чего на знаках были нарисованы различные числа. Ученые начинают отличать жилые зоны от индустриальных, понимать способы, которыми могли бы взаимодействовать коммерческие и транспортные инфраструктуры, и т. д. Множество деталей, которые они каталогизировали, оказались не совсем существенными, просто из-за катастроф или требований местной географии. Остается то же самое количество сырых данных, но они больше не представляют из себя головоломку.
Мы можем быть уверены, что прорыв подобного рода позволит нам понять, к чему относятся все детали мозга.
К несчастью, не все верят, что мы можем понять, как работает мозг. Впечатляющее количество людей, включая некоторых нейрофизиологов, верят, что так или иначе мозг и интеллект находятся за пределами объяснимого. А некоторые верят, что даже если мы сможем понять их, будет невозможно построить машину, которая будет работать подобным образом, что интеллект требует человеческого тела, нейронов и, возможно, каких-то новых и непостижимых законов физики. Когда я слышу подобные аргументы, я представляю мудрецов из прошлого, которые выступали против изучения небес или против вскрытия трупов, чтоб увидеть, как работают наши тела. «Не утруждайте себя изучением этого, это не приведет ни к чему хорошему, и даже если вы сможете понять, как это работает, мы ничего не сможем сделать с этими знаниями». Аргументы, подобные этим, ведут нас к направлению философии, называемому функционализмом, нашей последней остановке в краткой истории наших размышлений над мышлением.
Согласно функционализму, интеллект или разум безоговорочно является свойством организации, и по сути неважно, организации чего именно. Разум существует в любой системе, чьи составляющие части имеют правильные причинные отношения друг с другом, но эти части могут быть нейронами, силиконовыми чипами или чем-нибудь еще. Ясно, что эта точка зрения — стандартный выход для любого потенциального проектировщика интеллектуальных машин.
Рассмотрим ситуацию: будет ли игра в шахматы менее реальной, если при игре в нее вместо коней поставить солонки? Ясно, что нет. Солонка функционально эквивалентна «реальному» коню по тому, как она двигается по доске и взаимодействует с другими фигурами, таким образом это будет действительно игра в шахматы, а не просто их симуляция. Или, например, будет ли эта фраза той же самой, если я пройдусь по ней курсором, удаляя каждый символ, потом заново его печатая? Или возьмем пример ближе к сути, рассмотрим тот факт, что каждые несколько лет ваше тело замещает большинство составляющих его атомов. Несмотря на это, вы остаетесь самим собой во всех смыслах, которые касаются вас. Один атом ни чем не хуже другого, если он играет ту же функциональную роль в вашей молекулярной структуре. Та же самая история должна относиться и к мозгу:
Следуя этому принципу, искусственная система, использующая ту же самую функциональную архитектуру, что и интеллектуальный живой мозг, должна быть точно так же интеллектуальной — и не просто с какими то натяжками, а действительно, истинно интеллектуальной.
Сторонники ИИ, коннекционисты и Я — мы все функционалисты, до тех пор, пока мы верим, что по существу нет ничего специального или магического в мозгу, что делает его интеллектуальным. Все мы верим, что мы способны построить интеллектуальные машины как-нибудь и когда-нибудь. Но есть различные интерпретации функционализма. Тогда как я утверждаю, что я вижу центральную неудачу ИИ и коннекционистской парадигмы — ошибочность подхода «ввод-вывод» — есть более ценное высказывание насчет того, почему мы еще не способны разработать интеллектуальную машину. Пока сторонники ИИ принимают то, что я рассматриваю как бескомпромиссное обречение на провал, коннекционисты, с моей точки зрения, в основном всего лишь застенчивы.
ИИ-исследователи спрашивают, «Почему мы, инженеры, должны быть ограничены решениями, на которые наткнулась эволюция?». В принципе, в этом есть свой резон. Биологические системы, подобные мозгу и генетическому аппарату, печально известны своей неэлегантностью. Общей метафорой является машина Руба Голдберга, названная так после «великой депрессии» карикатуристами, которые нарисовали комически сверхсложное приспособление для выполнения тривиальных задач. У разработчиков ПО есть подобный термин, клудж, для обозначения программ, которые написаны без предусмотрительности и наполнены обременительной, ненужной сложностью, часто приводящей к тому, что программа становится непонятной даже программисту, написавшему ее. Исследователи ИИ боятся, что аналогично и мозг — беспорядочный несколько-сот-миллионолетний клудж, битком набитый неэффективным и эволюционным «наследственным кодом». Если так, удивляются они, почему бы просто не выбросить без сожаления эту кутерьму и не начать с нуля?
Большинство философов и когнитивных психологов благожелательны к этой точке зрения. Им нравится метафора разума, как программы, которая работает в мозгу, органическом аналоге компьютера. В компьютере аппаратный и программный уровни четко разделяются друг от друга. Одна и та же программа может выполняться на любой Универсальной Машине Тьюринга. Вы можете запустить WordPerfect на PC, Макинтоше, или на суперкомпьютере Cray, например, даже если все три системы имеют различные аппаратные конфигурации. И аппаратура не имеет никакого значения для вашего обучения, если вы пытаетесь изучить WordPerfect. По аналогии, следует мысль, мозг не может научить нас чему либо о разуме.
Защитники ИИ также любят указывать на исторические ситуации, в которых инженерные решения радикально отличались от природных версий. Например, как мы преуспели в построении летающих машин? Имитацией махательных движений у крылатых животных? Нет. Мы сделали это с помощью фиксированных крыльев и пропеллеров, а затем — с помощью реактивных двигателей. Это не так, как сделано в природе, но это работает — и работает гораздо лучше, чем машущие крылья.
Аналогично, мы сделали наземные транспортные средства, которые могут обогнать гепарда, не изготовлением четырехногих гепардоподобных бегающих машин, а изобретением колеса. Колеса — великолепный способ передвигаться по плоской местности, и то, что эволюция не наткнулась на эту определенную стратегию, не значит, что это блестящий путь для нас, чтоб обойти ее. Некоторые философы разума приняли расположение к метафоре «когнитивных колес», то есть, ИИ-решению некоторых проблем, которое хотя полностью отличается от того, что делает мозг, делает это действительно хорошо. Другими словами, программа, которая воспроизводит выходные данные, подобные (или превосходящие) человеческие решения задач каким то узким, но полезным способом, действительно хороший путь делать то, что делает мозг.
Я верю, что этот род интерпретаций функционализма — цель оправдывает средства — ведет ИИ исследователей в сторону. Как показал Серл в своей Китайской Комнате, эквивалентности поведения не достаточно. Поскольку интеллект внутреннее свойство мозга, мы должны смотреть внутрь мозга, чтоб понять, что такое интеллект. В наших исследованиях мозга, и в особенности неокортекса, нам необходимо быть осторожными в понимании того, какие детали всего лишь избыточная «замороженная случайность» эволюционного прошлого; несомненно, множество процессов в стиле Руба Голдберга перемешаны с важными свойствами. Но, как мы скоро увидим, там скрыта элегантность и великая мощь, опережающая наши лучшие компьютеры, ожидая, пока мы ее извлечем из нейронных цепей.