Обитаемые космические станции
Шрифт:
Кстати, аэрофотосъемка с борта орбитальной станции, которую можно будет назвать космофотосъемкой, позволит постоянно расширять и уточнять картографию нашей планеты. Съемка может производиться с помощью не только фототехники, но и инфракрасной аппаратуры и радиолокаторов, которые позволят преодолевать облачный покров и довольно значительную непрозрачность атмосферы. Съемки из космоса дадут возможность быстро уточнять и дополнять геофизические карты в связи с возникновением новых городов, каналов, водохранилищ, железных дорог, автострад, мостов и других искусственных сооружений. Как известно, одной из задач геодезии является точное определение размеров и расстоянии на поверхности Земли. При этом обычно применяется старинный способ земных
Главное в триангуляции — это точное знание координат, так называемых базисных линий. Измерять расстояния с помощью спутника Земли можно визированием его либо одновременно с двух базисных линий, проходящих через точки на границах измеряемого расстояния (рис. 2, а), либо независимо в разных точках орбиты (рис. 2, б). Второй метод не требует очень больших высот орбиты (до 1000 км) и позволяет вычислять расстояния с точностью в несколько раз большей, чем при одновременном фиксировании по первому методу.
Триангуляция поверхности Земли с помощью космических средств позволит получить точные расстояния между континентами и с большой точностью определить положение островов в океанах. Замеры из космоса могут дать точность измерений до 10–20 м [17], в то время как точность обычных способов всего лишь около 100 м.
Космические лаборатории окажут неоценимую услугу и геологам в изучении состава земной коры, неоднородности ее массы. Обследование гравитационных и магнитных аномалий поможет открыть новые залежи различных полезных ископаемых.
Научная космическая станция даст возможность ученым выяснить влияние на климат Земли процессов, происходящих в ледниках.
НИИ В КОСМОСЕ
Значение ОКС и тем более обитаемых станций как баз для научных исследований далеко не исчерпывается физикой Земли и космоса или метеорологией. Условия, в которых будет находиться орбитальная станция, позволят применить ее для других научных исследований.
Орбитальная станция — это прежде всего длительная невесомость, создать которую на Земле до сих пор практически не удалось, это глубокий вакуум, получение которого на Земле связано с большими трудностями, это большой перепад температур, огромная скорость движения, магнитные поля Земли и Солнца, неискаженное нижними слоями атмосферы действие космических излучений и солнечной радиации, воздействие микрометеоров и космической пыли. Воссоздание подобных факторов на Земле, особенно в комплексе, как мы уже говорили, связано с огромными, а подчас и непреодолимыми трудностями.
Сейчас еще трудно представить все достоинства ОКС как экспериментальной лаборатории для физиков. Вот лишь некоторые из ее возможностей.
Hа орбите легко можно получить температуру от -200 °C до +200 °C и притом совсем рядом, на открытой Солнцу и затененной сторонах космической станции (рядом жидкий кислород и пары воды!). Физикам понятно, что это значит. Взять хотя бы явление сверхпроводимости, изучение которого требует очень низких температур, или термоэлектрический эффект.
Верхние слои атмосферы насыщены частицами, несущимися из космоса с громадными энергиями — от нескольких миллиардов до миллиарда миллиардов электроновольт. Между тем самые крупные ускорители элементарных частиц разгоняют частицы лишь до скоростей, соответствующих нескольким десяткам миллиардов электроновольт. Снова физика. Снова космос ждет ученых.
Вакуум в космосе. Подобный ему на Земле можно получить лишь с помощью самых совершенных диффузионных и ионных вакуум-насосов, да и то в очень небольших объемах. Очевидно, что о размерах вакуумной камеры на борту ОКС говорить не приходится.
Взять хотя бы исследование взаимодействия солнечных излучений в далекой ультрафиолетовой части спектра с различными веществами. На Земле изучение этого явления ограничено размерами вакуумной трубки, в которой находится вещество. В космосе изучение этой проблемы свободно от подобных ограничений. Глубокий вакуум представляет интерес не только для физиков, но и для материаловедов. Как известно, при нормальных атмосферных условиях большинство металлов защищено с поверхности окисной пленкой, которая способствует, например, уменьшению коэффициентов трения металла по металлу. В условиях же глубокого вакуума окисная пленка не образуется и коэффициенты трения могут вырасти в несколько раз. Материаловеды могут исследовать также прочностные свойства металлов и развитие коррозии в глубоком вакууме.
Космическая лаборатория поможет проверить гипотезу о том, что в условиях космического полета, т. е. в невесомости, ускоряется рост кристаллов металлов и изменяется их структура. Это явление может быть интересно с точки зрения получения новых пьезоэлементов. Большое значение имеют и вопросы, связанные с воздействием космических излучений на материалы, интересные с точки зрения строительства будущих, космических кораблей. Как известно, такие исследования с кремнием, титаном, висмутом, магнием, никелем, железом, свинцом уже производились на американском спутнике «Дискаверер XXV».
Очень большие скорости потока, обтекающего орбитальную станцию в условиях разреженной среды и в широком диапазоне температур, открывают перспективы для экспериментаторов в области газовой динамики и тепло обмена. Представляет интерес, например, возможность в условиях невесомости полностью исключить явление передачи тепла свободной конвекцией и экспериментально изучить процессы кипения и конденсации паров различных веществ в условиях невесомости.
При помощи орбитальной станции успешно решается проблема использования солнечной энергии, 90 % которой отражается или поглощается атмосферой Земли. Использованию солнечной радиации для техники и научных исследований большое значение придавал Ф.Жолио-Кюри. В частности, он предлагал использовать энергию Солнца для массового фотосинтеза материалов, содержащих углерод, с помощью других веществ, аналогично тому как это происходит с хлорофиллом зеленых растений.
В принципе такая задача вполне может решаться на борту ОКС, ибо возможности получения солнечной энергии на ней практически почти не ограничены.
ОКС будет испытывать новые типы двигателей для космических кораблей. По мнению специалистов из американского национального комитета по аэронавтике и космическим полетам (NASA), испытания одного из таких типов двигателя, ионного, должны проводиться обязательно в условиях, близких к космическим, так как истечение струи рабочего тела такого двигателя должно происходить в глубокий вакуум. Эксперименты на орбите помогут провести техническую проверку конструкции ионного двигателя и решить целый ряд других важных проблем, например проблему радиосвязи в присутствии струи рабочего тела ионного двигателя. В иностранной печати встречаются также предложения об использовании орбитальной станции в качестве испытательного стенда для жидкостных и пороховых ракетных двигателей, предназначенных для верхних ступеней ракетоносителей [17].