Чтение онлайн

на главную

Жанры

Оформление книги. Редактору и автору
Шрифт:

Показатели степени и индексы должны быть значительно меньше букв и цифр в основной строке, чтобы четко отличаться от них, и примерно наполовину выступать над (или под) выражением, к которому они относятся.

Математические знаки четырех действий, знаки геометрических образов, а также знаки, показывающие соотношение левой и правой частей формулы, набираются таким же кеглем, как и вся строка, к которой они относятся.

Однако для некоторых знаков необходим больший размер:

скобки должны охватывать (по высоте) все заключенное в них выражение;

знак радикала v должен соответствовать по высоте подкоренному

выражению вместе с приставной линейкой, прикрывающей это выражение сверху;

знаки суммы произведения и интеграла? относятся к целому выражению; сигналом этого является их более крупный кегль по сравнению с другими элементами формулы: в однострочных — на 2–4 пункта, а в двухстрочных и многострочных — сообразно высоте формулы (пример 21).

Отдельные части формулы необходимо отбить (отделить) одну от другой. Нормальная величина каждого пробела внутри формулы — 2 пункта (при наборе нонпарелью — 1 пункт).

Отбивку внутри формул производят в следующих случаях:

знаки, выражающие соотношение между левой и правой частями формулы (=, ~, >, <), знаки действий (+, -, x,), знаки геометрических образов (L,), а также сокращенные обозначения тригонометрических функций и других математических терминов отделяют пробелом как от предыдущей, так и от последующей частей формулы; знак извлечения корня (радикал) отбивают только от предшествующей части формулы, не отделяя его от подкоренного выражения. Знак препинания, помещенный после формулы, не отделяется от нее.

Пример 20

Наборное оформление формулы, часть которой однострочная, а часть — двухстрочная

Пример 21

Наборное оформление формулы со знаками суммы и интеграла

Цифры и буквенные обозначения величин, следующие одни за другими и не разделенные какими-либо знаками, не отделяются друг от друга; индексы и показатели степени тоже не отбиваются от тех элементов формулы, к которым они относятся.

В двухстрочном выражении (дроби) делительная линейка должна быть равна более длинной части дроби (числителю или знаменателю); более короткая часть дроби выключается на середину по отношению к формату этой линейки.

Делительная линейка в дроби должна приходиться против средней линии формулы, то есть против середины знаков =, + и т. п. в однострочной части формулы.

Трехстрочное выражение — это дробь, у которой либо числитель, либо знаменатель тоже дробный. Чтобы читатель мог сразу отличить основную дробь от вспомогательной (то есть от той, которая служит числителем или знаменателем основной дроби), делительная линейка основной дроби выделяется либо увеличенной длиной (на 4–8 пунктов длиннее линейки вспомогательной дроби), либо повышенной жирностью. Аналогичный способ применяется и для четырехстрочных выражений.

Формулы, расположенные отдельными строками, обычно выключают в красную строку, то есть на середину формата (при асимметричном расположении некоторых других элементов, например заголовков, и формулы могут быть выключены таким же образом).

Формула, которая расположена в подбор с текстом, обязательно отделяется достаточно заметным пробелом (не менее половины кегля шрифта) от предшествующего и следующего за ней текста.

Переносы в формулах нежелательны. Чтобы уместить формулу в формат строки и таким образом избежать переноса, можно уменьшить пробелы между элементами.

Если таким путем не удается довести длинную формулу до формата строки, то перенос делается в первую очередь на знаках соотношения между левой и правой ее частями (=, =, >, <); во вторую — на знаках сложения или вычитания (+, -), делящих формулу на члены; в третью — на знаке умножения (x), который для этой цели вводится в математическое выражение. При переносе нельзя разделять особенно тесно связанные между собой элементы формулы — дроби, выражения в скобках, а также выражения, относящиеся к знакам радикала, интеграла, суммы и произведения.

Если в дроби числитель или знаменатель не умещается в одну строку, можно применить один из следующих способов:

набрать дробь шрифтом пониженного кегля;

набрать числитель в две строки с переносом, поместив обе строки над линейкой (или знаменатель в две строки с переносом, поместив их под линейкой) (пример 22);

преобразовать дробь, представив ее в виде суммы или произведения двух дробей, вторую из которых переносят в следующую строку; такое преобразование сравнительно несложно, но сделать его имеет право только автор или редактор.

Первый способ применим, если длина дроби лишь не намного превышает формат строки. Второй — особенно уместен, если переносимая часть дроби (числитель или знаменатель) не громоздка и в ней нет знаков радикала, интеграла и т. п. Третий — хорош при условии, что новая форма дроби будет вполне понятна читателю.

Вопрос о том, какой из перечисленных способов выбрать, должен быть согласован с редактором.

Во всех случаях переноса его знак повторяют два раза — в конце первой строки и в начале второй. Таким образом связь между обеими строками делается особенно заметной; благодаря этому читателю становится легче сразу охватить формулу глазом.

Переносимая формула может быть расположена двумя способами: по первому способу обе части (обе строки) формулы выключаются в красную строку; по второму же способу начало (первая строка формулы) выключается к левому краю формата или с небольшим отступом от него, а переносимая часть (вторая строка формулы) — к правому краю или с таким же отступом от него (пример 23).

При втором способе связь между обеими частями формулы более заметна.

Описанная система наборного оформления математических формул облегчает их восприятие, но некоторые положения ее приводят к тому, что формулы занимают довольно много места. Так, если формула (или какая-нибудь часть ее) представляет собой дробь, у которой знаменатель расположен под числителем и отделен от него горизонтальной чертой, то она (формула) занимает по высоте не одну строку, а немного больше двух; такую формулу нельзя набирать в подбор, а приходится помещать вразрез полосы и отбивать от предшествующего и последующего текста. В результате формула-дробь займет примерно четыре строки.

Поделиться:
Популярные книги

Бездомыш. Предземье

Рымин Андрей Олегович
3. К Вершине
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Бездомыш. Предземье

Фиктивный брак

Завгородняя Анна Александровна
Фантастика:
фэнтези
6.71
рейтинг книги
Фиктивный брак

Правила Барби

Аллен Селина
4. Элита Нью-Йорка
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Правила Барби

Чайлдфри

Тоцка Тала
Любовные романы:
современные любовные романы
6.51
рейтинг книги
Чайлдфри

Купеческая дочь замуж не желает

Шах Ольга
Фантастика:
фэнтези
6.89
рейтинг книги
Купеческая дочь замуж не желает

Идеальный мир для Социопата 13

Сапфир Олег
13. Социопат
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Идеальный мир для Социопата 13

Чемпион

Демиров Леонид
3. Мания крафта
Фантастика:
фэнтези
рпг
5.38
рейтинг книги
Чемпион

Курсант: Назад в СССР 10

Дамиров Рафаэль
10. Курсант
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант: Назад в СССР 10

Черный Маг Императора 4

Герда Александр
4. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 4

Мастер 3

Чащин Валерий
3. Мастер
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер 3

Кодекс Охотника. Книга XXV

Винокуров Юрий
25. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
6.25
рейтинг книги
Кодекс Охотника. Книга XXV

Неудержимый. Книга XI

Боярский Андрей
11. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XI

Рядовой. Назад в СССР. Книга 1

Гаусс Максим
1. Второй шанс
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Рядовой. Назад в СССР. Книга 1

Черный Маг Императора 9

Герда Александр
9. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 9