Оглянись – пришельцы рядом!
Шрифт:
Я выбрал отрывок, который озаглавлен «математика», и сделал это по двум причинам: во-первых, он невелик по объему, и я могу процитировать его полностью; во-вторых, спекуляции с математикой весьма опасны для неспециалиста. Математика – строгая дисциплина; тут каждый термин имеет свое определенное значение и должен стоять на своем месте. Я, как и Горбовский, не являюсь профессиональным математиком, но все же я – физик и вычислитель, а не историк, и мне легче разобраться с загадочными математическими познаниями древних.
Итак, цитирую Горбовского [5]:
«Математика. К числу сведений, восходящих к весьма отдаленному прошлому, относятся, очевидно, и необъяснимо высокие познания древних в области математики, тоже не являвшиеся результатом их практической деятельности, которая была бы известна
Число «пи» известно в истории математики как «число Лудольфа» – голландского ученого XVII века, рассчитавшего соотношение длины окружности к ее диаметру. Однако в Москве в Музее изобразительных искусств имени Пушкина хранится египетский папирус, из которого явствует, что египтянам давно было известно число «пи» [13, с.146, 293].
Но оказывается, еще до египтян число это было известно в Шумере. Знали в Шумере и теорему, которую тысячу лет спустя открыл Пифагор. Ученые жрецы и хранители знаний Древнего Шумера решали сложные алгебраические задачи, квадратные уравнения с несколькими неизвестными, задачи на сложные проценты и даже задачи, выходившие за пределы алгебры [25, с. 50]. Они предавались этим занятиям среди окружавшей дикости и варварства их эпохи. Писали они деревянными палочками на влажной глине, и то, что они делали, надолго опережало как практические потребности жизни, так и общий уровень знаний. Мы снова видим высокие познания, появляющиеся как бы внезапно и на уровень которых человечество выходит только тысячелетия спустя. Достаточно сказать, что среди клинописных текстов, найденных в Шумере, содержится математический ряд, конечный итог которого выражается числом 195 955 200 000 000. Это было число, которым, по мнению специалистов, европейская наука не умела оперировать даже во времена Декарта и Лейбница [13, с. 293]».
На первый взгляд все выглядит вроде бы пристойно, но не доверяйте первому впечатлению: большая часть приведенного выше текста из книги Горбовского является бредом. Чтобы легче было с ним разобраться, я снова воспроизведу отрывок, разбив его на фрагменты и пронумеровав их, чтобы подготовить для последующего анализа.
Цитирую еще раз:
«Математика. К числу сведений, восходящих к весьма отдаленному прошлому, относятся, очевидно, и необъяснимо высокие познания древних в области математики, тоже не являвшиеся результатом их практической деятельности, которая была бы известна нам.
1. Понятие «миллион», отмечает К.Керам, было принято в европейской математике только в XIX веке. Но оно было известно древним египтянам, имевшим даже специальный знак для его обозначения.
2. Число «пи» известно в истории математики как «число Лудольфа» – голландского ученого XVII века, рассчитавшего соотношение длины окружности к ее диаметру. Однако в Москве в Музее изобразительных искусств имени Пушкина хранится египетский папирус, из которого явствует, что египтянам давно было известно число «пи» [13, с. 146, 293]. Но оказывается, еще до египтян число это было известно в Шумере.
3. Знали в Шумере и теорему, которую тысячу лет спустя открыл Пифагор.
4. Ученые жрецы и хранители знаний Древнего Шумера решали сложные алгебраические задачи, квадратные уравнения с несколькими неизвестными, задачи на сложные проценты и даже задачи, выходившие за пределы алгебры [25, с. 50].
5. Они предавались этим занятиям среди окружавшей дикости и варварства их эпохи. Писали они деревянными палочками на влажной глине, и то, что они делали, надолго опережало как практические потребности жизни, так и общий уровень знаний.
6. Мы снова видим высокие познания, появляющиеся как бы внезапно и на уровень которых человечество выходит только тысячелетия спустя. Достаточно сказать, что среди клинописных текстов, найденных в Шумере, содержится математический ряд, конечный итог которого выражается числом 195 955 200 000 000. Это было число, которым, по мнению специалистов, европейская наука не умела оперировать даже во времена
Мы отложим анализ первого и шестого пунктов, поскольку отмеченные в них факты содержатся в книге Курта Керама «Боги, гробницы, ученые» – превосходной книге, должен отметить, но не лишенной многих недостатков. До Керама мы еще доберемся, а пока проанализируем пункт второй, касающийся числа «пи».
Вас не удивляет, что египтяне умели производить папирус, материал для письма, более долговечный, чем бумага, и доживший до наших времен? Что у них была довольно высокоразвитая медицина – они знали о многих болезнях, некоторые лечили и даже делали операции [5] ? Что те же египтяне и жители Шумера производили медные орудия, ткани, глиняные горшки, строили гигантские ирригационные сооружения? А ведь это весьма сложные технологические процессы! Попробуйте-ка выплавить медь и отковать из нее клинок или сделать глиняный кувшин – уверяю вас, такая задача под силу только профессионалу! Гораздо легче определить приближенное значение числа «пи». Для этого нам необходимы два колышка, веревка и ножик, чтобы эту веревку разрезать. Выберем ровное место, воткнем один колышек в почву, привяжем к нему веревкой другой и, натягивая веревку, опишем концом этого колышка окружность на земле. Уложим вдоль окружности еще один кусок веревки и обрежем его; длина этого куска равна длине окружности. Другим куском веревки измерим диаметр, а затем сравним длину обоих кусков. Мы выясним, что большой кусок (длина окружности) превосходит малый (диаметр) в три целых и одну седьмую раза, что является неплохим приближением для трансцендентного числа «пи» = 3,1415… Выполнить описанную мной работу гораздо легче, чем сделать глиняный горшок – тем более, ученым жрецам, служителям культа.
5
О медицинских познаниях египтян нам известно, в частности, из папируса Эберса (примерно 1500 лет до н.э.). Я ознакомился с его английским переводом (перевода на русский нет) и свидетельствую, что это поразительный документ. Отрывок из данного папируса, касающийся сахарного диабета, приведен в книге Х.Астамировой, М.Ахманова «Большая энциклопедия диабетика». Вообще же с древнеегипетскими загадками и тайнами я познакомился в тот период, когда писал роман «Страж фараона» и пользовался консультациями известного египтолога с Восточного факультета Петербургского госуниверситета. Египтяне действительно умели так много! Но еще поразительней то, чего они не умели. Так, их достижения в математике весьма скромны – они не ведали привычных нам алгоритмов деления и умножения, знали только два математических действия, сложение и вычитание, а также простые дроби типа 1/2, 1/3, 1/4 и так далее. Умножение заменялось многократным сложением, деление – примерным подбором ответа и проверкой с помощью многократного сложения, подходит ли этот ответ. Действия, которые покажутся элементарными школьнику наших дней, занимали у египетских «специалистов» долгие часы. Если что и достойно восхищения, так их трудолюбие.
Что касается Лудольфа ван Цейлена (1540–1610), то он вычислил число «пи» с тридцатью пятью десятичными знаками не путем примитивных измерений, а с помощью весьма сложной математической техники, использующей описанные и вписанные правильные многоугольники со все возрастающим числом сторон. А вскоре, в 1593 г., Виет нашел выражение для «пи» в виде бесконечного произведения тригонометрических функций. Вот такого в Египте и Двуречье точно не умели! Так что оставим каждому веку свои достижения и не будем считать египетских и шумерских жрецов и писцов ни гениями, ни кретинами, ни наследниками знаний Атлантиды.
Обратимся к пункту третьему и прежде всего заметим, что теоремы не открывают, а доказывают. Шумерским жрецам действительно была известна теорема Пифагора – как практическое правило, которым удобно пользоваться при различных вычислениях. Однако эту теорему в Шумере не доказали. Там вообще ничего не доказывали, поскольку хоть математики Двуречья были искуснее египетских, но метод математических доказательств не изобрели. А Пифагор – вернее, ученые пифагорейской школы – таким методом владели, и это их огромное достижение сравнительно с шумерскими предшественниками. Недаром они жили тысячу лет спустя!