Освой самостоятельно С++ за 21 день.
Шрифт:
Немного передохните, наградите себя шоколадной медалью за проделанный путь и, перелистнув страницу, приступайте к следующей неделе.
Неделя №2
Основные вопросы
Мы завершили первую неделю обучения и научились основным принципам и средствам программирования на C++. Для вас теперь не должно составлять труда написание и компиляция небольшой программы. Также вы должны четко представлять, что такое классы и объекты, составляющие основу объект-ориентированного программирования.
Что
Вторую неделю начнем с изучения указателей. Указатели традиционно являются сложной темой для освоения начинающими программистами на C++. Но в этой книге вы найдете подробные и наглядные разъяснения того, что такое указатель и как он работает, поэтому, мы надеемся, что через день вы уже свободно будете владеть этим средством программирования. На занятии 9 вы познакомитесь со ссылками, которые являются близкими родственниками указателей. На занятии 10 вы узнаете как замешать функции, а занятие 11 будет посвящено наследованию и разъяснению фундаментальных принципов объект-ориентированного программирования. На занятии 12 вы узнаете как создавать структуры данных от простых массивов до связанных списков. Занятие 13 расширит ваши представления об объект-ориентированном программировании и познакомит с полиморфизмом, а занятие 14 завершит вторую неделю обучения рассмотрением статических функций и функций друзей класса.
День 8-й. Указатели
Возможность непосредственного доступа к памяти с помощью указателей — одно их наиболее мощных средств программирования на C++. Сегодня вы узнаете:
• Что такое указатели
• Как объявляются и используются указатели
• Как работать с памятью
При работе с указателями программисты подчас сталкиваются с довольно специфическими проблемами, поскольку в некоторых ситуациях механизм работы указателей может оказаться весьма запутанным. Кроме того, в ряде случаев нельзя однозначно ответить на вопрос о необходимости применения указателей. На этом занятии последовательно, шаг за шагом, вы освоите основные принципы работы с указателями. Однако осознать всю мощь этих средств вы сможете, только прочитав книгу до конца.
Что такое указатель
Указатель — это переменная, в которой записан адрес ячейки памяти компьютера.
Чтобы понять, как работают указатели, необходимо хотя бы в общих чертах, ознакомиться с базовыми принципами организации машинной памяти. Машинная память состоит из последовательности пронумерованных ячеек. Значение каждой переменной хранится в отдельной ячейке памяти, которая называется ее адресом. На рис. 8.1 изображена структура размещения в памяти четырехбайтового целого значения переменной theAge.
Для разных компьютеров характерны различные правила адресации памяти, имеющие свои особенности. Однако в большинстве случаев программисту не обязательно знать точный адрес какой-либо переменной — эту задачу выполняет компьютер. При необходимости такую информацию можно получить с помощью оператора адреса (&). Пример использования этого оператора приведен в листинге 8.1.
Рис. 8.1. Сохранение в памяти переменной theAge
Листинг 8.1. Оператор адреса
1: // Листинг 8.1. Пример использования
2: // оператора адреса
3:
4: #include <iostream.h>
5:
6: int main
7: {
8: unsigned short shortVar=5;
9: unsigned long longVar=65535;
10: long sVar = -65535;
11:
12: cout << "shortVar:\t" << shortVar;
13: cout << " Address of shortVar:\t";
14: cout << &shortVar << "\n";
15:
16: cout << "longVar:\t" << longVar;
17: cout << " Address of longVar:\t"
18: cout << &longVar << "\n";
19:
20: cout << "s.Var:\t" << sVar;
21: cout << " Address of sVar:\t"
22: cout << &sVar << "\n";
23:
24: return 0;
25:}
Результат:
shortVar: 5 Address of shortVar: 0x8fc9:fff4
longVar: 65535 Address of longVar: 0x8fc9:fff2
sVar: -65535 Address of sVar: 0x8fc9:ffee
(Ваши результаты могут отличаться от приведенных в листинге.)
Анализ: В начале программы объявляются и инициализируются три переменные: в строке 8 — переменная типа unsigned short, в строке 9 — типа unsigned long, а в строке 10 — типа long. Затем в строках 12-16 выводятся значения и адреса этих переменных, полученные с помощью оператора адреса (&).
При запуске программы на компьютере с процессором 80386 значение переменной shortVar равно 5, а ее адрес — 0x8fc9:fff4. Адрес размещения переменной выбирается компьютером и может изменяться при каждом последующем запуске программы. Поэтому ваши результаты могут отличаться от приведенных. Причем разница между двумя первыми адресами будет оставаться постоянной. При двухбайтовом представлении типа short эта разница составит 2 байта, а разница между третьим и четвертым адресами — 4 байта при четырехбайтовом представлении типа long. Порядок размещения этих переменных в памяти показан на рис. 8.2.
В большинстве случаев вам не придется непосредственно манипулировать адресами переменных. Важно лишь знать, какой объем памяти занимает переменная и как получить ее адрес в случае необходимости. Программист лишь указывает компилятору объем памяти, доступный для размещения статических переменных, после чего размещение переменной по определенному адресу будет выполняться автоматически. Обычно тип long имеет четырехбайтовое представление. Это означает, что для хранения переменной этого типа потребуется четыре байта машинной памяти.
Использование указателя как средства хранения адреса
Каждая переменная программы имеет свой адрес, для хранения которого можно использовать указатель на эту переменную. Причем само значение адреса знать не обязательно.
Допустим, что переменная howOld имеет тип int. Чтобы объявить указатель pAge для хранения адреса этой переменной, наберите следующий фрагмент кода:
int *pAge = 0;
Этой строкой переменная pAge объявляется указателем на тип int. Это означает, что pAge будет содержать адрес значения типа int.