Чтение онлайн

на главную - закладки

Жанры

От чёрных облаков к чёрным дырам
Шрифт:

Первое свидетельство принёс с собой метеорит, упавший в 1969 г. в мексиканской деревне Пуэблито де Алленде и получивший название метеорита из Алленде. В нём обнаружились некоторые особенности в ядерном составе. Известные под названием изотопических аномалий эти особенности дают ключ к пониманию происхождения нашей Солнечной системы.

Изотоп данного элемента содержит ядро с тем же числом протонов, но с иным числом нейтронов. Например, алюминий, из которого сделаны наши кастрюльки и сковородки, является стабильным элементом, в ядре которого имеется 13 протонов и 14 нейтронов. Символ этого элемента 27Al. У него есть нестабильный изотоп 26Al, содержащий в ядре 13 протонов и 13 нейтронов. Поскольку химические свойства элемента определяются

числом заряженных частиц в его ядре, 27Al и 26Al будут иметь одинаковые химические свойства. Но их ядерные свойства различны.

Нестабильный 26А1 радиоактивен, и его период полураспада равен 720 000 лет. Это означает, что если мы запасём 100 ядер 26А1, то в среднем половина из них распадётся за это время. Главным продуктом распада является изотоп элемента магния. Процесс распада можно записать в виде

26Al -> 26Mg + e+ + .

Ядро магния содержит 12 протонов и 14 нейтронов. Таким образом, один из протонов в первоначальном ядре превращается в нейтрон. Кроме того, образуются позитрон и нейтрино.

Метеорит из Алленде, как выяснилось, содержит некоторые изотопы в пропорциях, сильно отличающихся от тех, которые обычно обнаруживаются в разных составных частях Солнечной системы. Эти отличия в распространённости и получили название изотопических аномалий. Среди прочего была обнаружена аномально большая доля 26Mg. Как это могло случиться?

Как вопрос, так и ответ на него можно лучше понять с помощью аналогии. Предположим, что какая-то страна установила законы о контроле над золотом, согласно которым гражданам не разрешается иметь в своём владении чистое золото в количестве, превышающем некоторую квоту. Если окажется, что при выборочной проверке какой-то части населения у одного человека найдут золота больше, чем разрешено, то возникает вопрос, где он добыл так много золота? Расследование может в конце концов привести к открытию, что он вывез это золото из другой страны, где оно легкодоступно. Вопрос, заданный астрофизиками по поводу метеорита из Алленде, звучал похоже: где и каким образом этот метеорит сумел создать большие запасы магния? Описанные ниже исследования, посвящённые этому вопросу, не менее увлекательны, чем поиск тайных путей контрабанды.

Существует много процессов, в которых в принципе может образовываться лишний 26Mg. Но ключ к правильному ответу был получен тогда, когда внимательно проанализировали минеральный состав метеорита. Обнаружилось, что распространённость 26Mg скоррелирована с распространённостью 27Аl, так что возникает некоторая связь между магнием и алюминием. Как мы только что видели, эта связь устанавливается через 26Аl, который распадается на 26Mg.

Так пришли к заключению, что либо 26Аl как-то попал в вещество метеорита и затем распался там примерно за 720 000 лет, либо метеорит образовался из вещества межзвёздной среды, уже содержавшего 26Mg, получившийся от распада присутствовавшего в среде 26Аl. Последний сценарий выглядит более приемлемым, так как предполагает, что метеорит должен был образоваться вскоре после обогащения межзвёздной среды 26Аl; в противном случае постоянное размешивание среды космическими процессами устранило бы все признаки любого давнего обогащения. Отсюда вывод, что образование метеорита имело место вскоре после попадания и последующего распада 26Аl в межзвёздной среде. Какой же космический процесс мог внести этот изотоп алюминия в межзвёздное пространство?

Именно здесь на сцену выступает сверхновая: Заметим прежде всего, что описанная в гл. 7 а-цепочка увеличивает число частиц в ядре на 4. Так получаются 12С, 16O, 20Ne, 24Mg и т.д. В эту последовательность не входит 26Аl. Но он может образоваться в течение взрывной фазы нуклеосинтеза

в сверхновой, о которой шла речь выше. В этой фазе к имеющимся ядрам могут добавляться свободные нейтроны (n) и протоны (p) с образованием ядер, не входящих в -цепочку. Так, 26Аl получается из 24Mg в результате последовательности приведённых ниже реакций:

24Mg + n– > 25Mg,

25Mg + n– > 26Mg,

26Mg + p– > 26Al + n.

Есть и другие пути образования 26Аl на этой стадии существования сверхновой. Выбросы после взрыва вполне могут загрязнить окружающее межзвёздное пространство.

Таким образом, изотопические аномалии метеорита из Алленде (подобные обсуждавшемуся избытку 26Mg) и ряд других указывают, что они возникли, так как в окрестности того газового облака, из которого образовалась Солнечная система, пролетела сверхновая. При этом появление сверхновой не могло быть удалено слишком далеко по времени от начала образования Солнечной системы. Например, если разрыв во времени между взрывом сверхновой и образованием Солнечной системы составлял, скажем, миллион лет или больше, то все следы загрязнения, связанные со сверхновой, были бы стёрты.

Итак, свидетельство, которое принёс нам метеорит из Алленде, позволяет установить связь между происхождением нашей Солнечной системы и сравнительно недавним взрывом сверхновой. Вполне возможно, конечно, что присутствие сверхновой поблизости от Солнечной системы было совершенно случайным, так же как и совпадение времени её взрыва с моментом, предшествующим началу образования Солнечной системы. Однако поскольку сверхновые все-таки довольно редки, во всем этом должно быть больше смысла, чем кажется на первый взгляд. Действительно, существует физический довод, согласно которому взрыв сверхновой запускает в действие механизм образования звёзд в её окрестности. Коротко обсудим этот довод, прежде чем переходить к другим свидетельствам.

Напомним, что взрыв звезды вызван гигантской ударной волной, родившейся в сердцевине звезды и идущей наружу. Волна не задерживается на поверхности звезды и продолжает свой путь. При удалении от центра взрыва интенсивность ударной волны, естественно, уменьшается. Но в ближайшей окрестности звезды она может быть ещё очень большой. Такая волна, налетая на поблизости расположенное межзвёздное облако, может сообщить ему сильный толчок. Именно этого толчка нам не хватало, чтобы началось сжатие облака, так что предлагаемый механизм разрешает отмеченную в конце гл. 5 трудность, а именно: как начинается сжатие большого разреженного облака? Внешнее давление от ударной волны разрушает баланс всех сил, действующих в облаке газа, в пользу сжатия. Есть ли у нас какие-нибудь свидетельства существования таких ударных волн в окрестности молодых, только образующихся звёзд? Да! Такое свидетельство было получено в 1977 г. двумя астрономами, Хербстом и Ассуза.

Хербсти Ассуза исследовали окрестность астрономического объекта, называемого Большой Пёс R—1. Это остаток сверхновой типа Крабовидной туманности на рис. 52. Как и в Крабе, есть указания на движение газовых частиц наружу, что подтверждает факт взрыва. Оценки показывают, что взрыв имел место за 800 000 лет до момента, наблюдаемого сейчас в Большом Псе R—1. Более интересно то, что не слишком далеко от остатков сверхновой наблюдались новые, ещё не попавшие на главную последовательность звёзды. Считается, что эти звёзды, чей возраст оценивается всего лишь примерно в 300 000 лет, вероятно, самые молодые из всех известных астрономам.

Очевидно, что эти звёзды образовались после взрыва. Насколько силён был взрыв? Если мы попытаемся сделать пересчёт от современных наблюдений разлетающегося газа, то для выделившейся при взрыве энергии получим 1044 Дж. Для сравнения, Солнцу, мощность которого составляет 4 • 1026 Вт, потребовалось бы 8 миллиардов лет, чтобы излучить такое количество энергии. Какой бы фантастичной не казалась эта цифра по отношению к обычным звёздам, она характеризует энергию взрыва сверхновой.

Поделиться:
Популярные книги

Огненный князь 6

Машуков Тимур
6. Багряный восход
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Огненный князь 6

Лорд Системы 12

Токсик Саша
12. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 12

Последний Паладин. Том 4

Саваровский Роман
4. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 4

Тринадцатый

NikL
1. Видящий смерть
Фантастика:
фэнтези
попаданцы
аниме
6.80
рейтинг книги
Тринадцатый

Газлайтер. Том 2

Володин Григорий
2. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 2

Сирота

Шмаков Алексей Семенович
1. Светлая Тьма
Фантастика:
юмористическое фэнтези
городское фэнтези
аниме
5.00
рейтинг книги
Сирота

Бастард Императора. Том 2

Орлов Андрей Юрьевич
2. Бастард Императора
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Бастард Императора. Том 2

Сердце Дракона. Том 10

Клеванский Кирилл Сергеевич
10. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.14
рейтинг книги
Сердце Дракона. Том 10

На границе империй. Том 7. Часть 2

INDIGO
8. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
6.13
рейтинг книги
На границе империй. Том 7. Часть 2

Государь

Кулаков Алексей Иванович
3. Рюрикова кровь
Фантастика:
мистика
альтернативная история
историческое фэнтези
6.25
рейтинг книги
Государь

Релокант

Ascold Flow
1. Релокант в другой мир
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Релокант

Безнадежно влип

Юнина Наталья
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Безнадежно влип

Магия чистых душ 3

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Магия чистых душ 3

Первый среди равных

Бор Жорж
1. Первый среди Равных
Фантастика:
попаданцы
аниме
фэнтези
5.00
рейтинг книги
Первый среди равных