От предвидения к власти. Как ИИ-прогнозирование трансформирует экономику и как использовать его силу в своих целях
Шрифт:
Фабрики были устроены так, чтобы станки размещались ближе к источнику энергии. Это оправдывало вертикальную конструкцию с расположенными друг над другом цехами. Однако тесные многоэтажные фабрики конца 1800-х годов имели множество недостатков с точки зрения условий труда, безопасности и производительности оборудования. Электрификация избавляла от необходимости втискивать производство в небольшое помещение.
Более предприимчивые менеджеры поняли: истинная ценность электроэнергии в том, что на ее основе возможно предложить системное решение, которое в полной мере использовало бы ее потенциал. Под системой мы понимаем набор процедур, которые в совокупности обеспечивают выполнение того или иного действия.
Вспомните пространственную
Электричество уравняло разные зоны помещения в их экономической ценности и позволило использовать пространство гибко. Теперь можно было расположить оборудование в линию, чтобы сократить расстояние, на которое перемещаются детали в процессе обработки. Изобретенный Генри Фордом конвейер для сборки автомобиля Model T не смог бы работать на паровой энергии. Такая возможность появилась только благодаря электричеству, причем спустя десятилетия после демонстрации его коммерческих перспектив. Да, Форд производил автомобили. Но в значительной степени он был поставщиком системного решения, которое изменило промышленный ландшафт. Только после этого стало очевидно колоссальное влияние электрификации на производительность труда.
Из истории промышленности можно извлечь три урока. Во-первых, чтобы значительно повысить производительность, надо понять, что предлагает новая технология. Предприниматель, делавший ставку на электричество в 1890 году, сосредоточился бы на «экономии затрат на топливо» как на ключевом ценностном предложении. Но электричество – это не просто более дешевая замена парового двигателя. Его истинная ценность заключалась в том, что оно позволяло отделить использование энергии от ее источника. Это освободило промышленников от ограничений, связанных с размещением оборудования, что привело к целому ряду усовершенствований в планировке фабрик и рабочих процессов. Предпринимателю, предлагавшему перейти на электричество в 1920 году, следовало понимать, что ключевое ценностное предложение – это не «экономия затрат на топливо», а «создание гораздо более эффективной организации производства». Такую же картину мы ожидаем увидеть и с ИИ. Как мы уже отмечали, первоначально предлагавшиеся предпринимательские возможности были связаны с точечными решениями: так, компания Verafin заменила один способ прогнозирования другим – более качественным, быстрым и дешевым.
Нам также известны прикладные решения, требующие перепроектирования устройств или продуктов. Таковы роботы или приложения на ваших гаджетах, реализованные на основе ИИ. Например, камера смартфона, распознающая ваше лицо, сконструирована определенным образом. К ней прилагается аппаратное обеспечение для защиты передаваемой информации. Пожалуй, наиболее заметно к инновациям такого рода подтолкнуло вложение миллиардов долларов в разработку и запуск автомобилей, которые могли бы самостоятельно передвигаться в существующих дорожных условиях. Хотя внешне они ничем не отличаются от обычных автомобилей, их внутреннее устройство существенно изменено и включает датчики, средства бортовой обработки данных и последующего управления машиной.
В будущем мы увидим множество высокоэффективных системных решений на основе ИИ. В этой книге мы рассмотрим как возможности, так и проблемы, связанные с их реализацией.
Во-вторых, осознав, в чем состоит ценностное предложение ИИ, следует поставить довольно очевидный, но при этом трудноразрешимый вопрос. Как бы мы подошли к разработке наших продуктов, услуг или предприятий с нуля с учетом уже имеющихся знаний об ИИ? Многоэтажные фабричные корпуса возникли не в традиционных отраслях, а в тех, что появились в 1900-х годах, то есть были новыми на тот момент. Это табачная промышленность, производство металлоизделий, транспортного оборудования
В отношении ИИ мы можем задать те же два вопроса. Первый: что на самом деле дает нам ИИ? Второй: если мы создаем бизнес с нуля, то какие процессы и модели следует внедрить? Если электричество позволяло не просто «снизить стоимость энергии», а «гораздо эффективнее организовать производство», то, возможно, ИИ тоже позволяет не «снизить стоимость прогнозирования», а «гораздо эффективнее создавать продукты, услуги и организации». Основное преимущество электричества заключалось в том, что оно отделяло использование энергии от ее источника, а это способствовало инновациям в планировке фабрик. Основное преимущество ИИ в том, что он отделяет прогнозирование от остального процесса принятия решений, а это помогает переосмыслить взаимодействие решений и тем самым способствует инновациям в организационном проектировании. Мы утверждаем, что, отделяя прогнозирование от других аспектов принятия решения и передавая его машине, ИИ позволяет внедрять инновации на системном уровне. В таких системах ключевой структурный элемент – это решения, а ИИ совершенствует процесс их принятия.
В-третьих, различные типы решений предоставляют разные возможности для получения власти на рынках. Предприниматели получают прибыль, создавая и присваивая ценность. В случае точечных решений проблема состоит в том, что создается относительно небольшая ценность. Электричество заменяло паровые двигатели, которые уже широко применялись. Заместить одно другим было не так просто, а если и удавалось, то ценностное предложение для потребителя заключалось в уменьшении счета за энергию. Другими словами, поставщики точечных решений получают устойчивую прибыль благодаря тому, что лучше других реализуют эти решения, что и продемонстрировала Verafin. Но это в лучшем случае.
По мере перехода к прикладным, а затем системным решениям создаваемая предпринимателями ценность получает все более надежную защиту. Чтобы обезопасить продукт от конкурентов, следует оформить патент или использовать другие средства охраны интеллектуальной собственности. Однако в случае с системными решениями возможностей защиты еще больше. В эпоху электричества по большей части сами владельцы предприятий заботились о том, чтобы обустроить производство по-новому. Они создавали в своей отрасли ноу-хау, благодаря чему завоевывали рынок и ограждали себя от конкуренции. Планировку завода может видеть каждый, но процедуры, компетенции и обучение, лежащие в основе организации рабочих процессов, не так очевидны, и воспроизвести их довольно трудно. Более того, новые системные решения обеспечивают масштабирование.
Потребовались десятилетия, чтобы электричество зарекомендовало себя как подрывная инновация. В течение первых двух десятилетий своего существования оно точечно использовалось на некоторых предприятиях, для освещения улиц и в других областях. Но оно изменило экономику, только когда появились новые системные решения. Трансформация оказалась глубокой, и власть получили те, кто контролировал выработку электроэнергии и электросети, а также те, кто сумел использовать электричество в массовом производстве. После этого уже не интересно было выпускать ремни и шкивы или владеть промышленными площадями в центре города.
То же самое происходит с искусственным интеллектом. Перераспределение экономической власти, в результате которого контроль над дефицитными ресурсами и активами переходит от одной группы людей к другой, сопровождается возможностью оградить бизнес от конкурентного давления. Безусловно, у ИИ есть для этого потенциал, но он изменит отрасли и распределение сил в них, то есть станет подрывной инновацией, лишь при наличии новых систем. Их трудно разработать, а также, как мы увидим, трудно скопировать по причине высокой сложности. Это является преимуществом для тех, кто способен их создавать.