От водорода до …?
Шрифт:
Убийца, спрятавшийся в солонке
Хлор — это тяжелый (почти в 2,5 раза тяжелее воздуха) зеленовато-желтый газ, обладающий острым удушающим запахом и высокой ядовитостью для всего живого — от едва различимых под микроскопом бактерий до крупнейших животных.
Ядовитость газа, названного за свой цвет хлором (от греческого слова «хлорос» — зеленовато-желтый), объясняется его большой химической активностью. Он легко вступает в соединение почти со всеми химическими элементами, в том числе со многими металлами (натрием, калием, медью, оловом и
Активность хлора «убила» и его самого. В природе в свободном состоянии он не встречается. Если же где-либо и образуется при редких условиях (например, при извержениях подводных морских вулканов), то в очень небольших количествах, и тотчас исчезает в результате взаимодействия с окружающими веществами.
Одно из наиболее распространенных соединений хлора — поваренная соль. Но не каждому, пожалуй, известно, каково количество имеющейся на земном шаре соли. А оно огромно! В растворенном состоянии соль содержится в воде морей и океанов. В твердом виде вся соль заняла бы 20 000 000 куб. км. Таким количеством соли можно было бы засыпать всю поверхность суши земного шара (149 000 000 км2) слоем более сотни метров толщиной.
В растворенном состоянии соль содержится в минеральных озерах, соляных ключах и соляных ручьях (несколько таких ключей вносят свои воды в озеро Баскунчак). На дне русла высохшей реки Узбой соль залегает на большом протяжении сплошным соляным пластом. Огромные куполообразные глыбы соли, целые соляные горы находятся в недрах земли и на ее поверхности, например, гора Ходжа-Мумын в Южном Таджикистане, сплошь состоящая из каменной соли, подымается на 900 м над уровнем моря.
Соль — необходимое соединение для организмов животных и человека. В организме человека содержится до 200 г соли. Важное значение соли в организмах наземных животных и правильное соотношение между солью и другими соединениями хлора, находящимися в крови наземных животных, приближающееся к тому, которое имеется в морской воде, рассматривается некоторыми учеными как доказательство происхождения наземных животных, из морских организмов.
Соль открывает историю искусственного получения хлористых соединений и самого хлора. Начало этой истории связывается с 1648 г., когда немецкий химик и врач Иоганн Глаубер, нагревая влажную соль на угле, получил, конденсируя выделяющийся дым, сильную кислоту, названную им «соляным спиртом».
Следует указать, что в книге «Триумфальная колесница антимония», написанной Василием Валентином, жившим в начале XV столетия, среди подробного описания свойств и медицинского применения сурьмы и некоторых соединений висмута упоминается также и «соляный спирт». Видимо, нужно допустить, что последний был известен до Глаубера, и Глаубер лишь открыл и описал способ приготовления этого вещества. Однако современные историки химии полагают, что сочинения Василия Валентина написаны врагами Парацельса с целью доказать, что все написанное им было известно уже в XV в., поэтому, может быть, и упоминающийся в этой книге «соляный спирт» внесен в нее после открытия Глаубера. В 1772 г. английский химик Пристли, изучив свойства раствора «соляного спирта» в воде, назвал его соляной кислотой. В 1774 г. шведский химик Шееле нашел, что соляная кислота, при нагревании с двуокисью марганца, дает желто-зеленый газ — хлор.
Хлор не сразу нашел применение. Впервые хлор был использован в медицине. Раствор хлора в воде — хлорная вода — рекомендовалась как дезинфицирующее вещество врачам и студентам-медикам при работе на трупах. В 30-х годах прошлого столетия хлорную воду использовали для ингаляции при туберкулезе легких, дифтерии и некоторых других болезнях.
С развитием техники области применения хлора все более и более расширялись. Он применялся при изготовлении многочисленных химических соединений в анилиново-красочной и фармацевтической промышленностях, в производстве соляной кислоты, хлорной извести, гипохлоритов и т. д. Большие количества хлора используются для отбелки тканей и целлюлозы в бумажной и текстильной промышленностях. В цветной металлургии хлорированием получают некоторые металлы из руд. В химии высокомолекулярных соединений хлор используется при изготовлении пластических масс, синтетических волокон, каучука и т. д. Интересным свойством обладает одно из кислородных соединений хлора с магнием (хлорат магния). При действии этого вещества на хлопчатник последний теряет листья. Это используется при сборе хлопка. Веществ с подобным действием получено уже много. Они называются дефолиантами.
В первую мировую войну хлор нашел неожиданное применение как оружие массового уничтожения.
Вскоре после хлора был применен другой удушающий газ — фосген — соединение хлора с окисью углерода. Название нового газа отражало один из способов его получения. Это соединение образуется под влиянием солнечных лучей (от греч. «фос» — свет и «генао» — произвожу, т. е. рожденный светом). В 1917 г. массовое применение нашел иприт, который тоже содержал в себе хлор. К концу войны применялось более 50 различных боевых отравляющих веществ, 95 % которых были производными хлора. Чтобы судить об эффективности ОВ на полях войны, достаточно указать, что в одной только английской армии, занимавшей среди воюющих государств 5 место по своей численности, с июля 1917 г. по ноябрь 1918 г. ОВ вывели из строя более 160 000 человек.
Таков вкратце рассказ о зелено-желтом газе, который преступной волей кучки империалистов в первой мировой войне был превращен в убийцу тысяч людей.
Торжество третьего знака
В конце прошлого века техника и наука обогатились созданием ряда инструментов для определения физико-химических свойств различных элементов. Развитие науки требовало точных знаний о свойствах веществ. Поэтому, пользуясь новыми, более тонкими и чуткими приборами, физики заново измеряли температуры плавления и кипения тел, их оптические, электрические и другие свойства. В 1893 г. английский физик Джон Вильям Рэлей решил провести измерение удельных весов различных газов, в первую очередь тех, с которыми физики и химики чаще всего имели дело. Такими газами были азот, водород и кислород.
Определяя вес азота, Рэлей установил, что азот, полученный из воздуха, весит больше, чем азот, выделенный из его соединений. Так, литр «воздушного» азота весил 1,257 г, литр же азота, выделенного из соединений, весил 1,251 г. Разница была ничтожной, и начиналась она с тысячных долей грамма, с третьей цифры после запятой — 0,006. Шесть миллиграммов — столько, сколько, приблизительно, весит блоха. Но эта разница была постоянной, несмотря на различные способы выделения азота из многообразных его соединений.
Результаты своих исследований о «ненормальном» весе «воздушного» азота Рэлей опубликовал в известном английском журнале «Природа». В своей статье Рэлей обращался к ученым, читающим журнал, с просьбой объяснить весовую ненормальность «воздушного» азота. Лондонский профессор Вильям Рамзай высказал остроумную догадку. Он предположил, что «воздушный» азот весит больше потому, что в нем есть примесь какого-то тяжелого газа. Однако догадка Рамзая опровергалась данными опытных исследований. Ведь воздух неоднократно исследовался многими учеными. Состав его, казалось всем, установлен настолько точно, что невозможно было допустить в нем наличие каких-то неизвестных примесей. Все же это не помешало Рэлею и Рамзаю взять на себя труд пересмотреть работы прежних исследователей. И вот, просматривая пожелтевшие от времени рукописи Гэнри Кэвендиша, умершего более столетия назад, они неожиданно натолкнулись на описание интересного опыта, результаты которого остановили на себе внимание обоих исследователей. Опыт заключался в следующем: через дугообразно изогнутую стеклянную трубку, наполненную смесью азота с кислородом и опущенную концами в рюмки со ртутью, в течение трех недель пропускались электрические искры. Длительность опыта объяснялась тем, что источником электричества являлась электрофорная машина. Искры от нее получались слабые и проскакивали в трубке через большие промежутки времени. Продукт реакции «оранжевый дым» — окислы азота поглощались каплями щелочи, которую Кэвендиш вводил пипеткой в трубку. Когда ртуть заполнила всю трубку и азот с кислородом полностью, перейдя в «оранжевый дым», растворились в щелочи, опыт был закончен. Однако, присмотревшись внимательно, Кэвендиш заметил над ртутью и щелочью маленький пузырек газа. Несмотря на длительное пропускание электрических искр он так и не превратился в «оранжевый дым».