«Открытия и гипотезы» №2, 2012
Шрифт:
Искусственно поддерживать металл в «восстановительных» условиях можно и иным способом, ведь не всегда есть возможность добавить ингибитор. Возьмем, к примеру, обычное оцинкованное ведро. Оно сделано из углеродистой стали, а сверху покрыто слоем цинка. Цинк — более активный металл, чем железо, значит, он охотнее вступает в химические реакции. Поэтому цинк не просто механически изолирует стальное ведро от окружающей среды, но и «принимает огонь на себя», то есть корродирует вместо железа.
Похожим способом нередко защищают днища кораблей. Только их не покрывают сплошным слоем цинка, марганца или алюминия — это было бы очень
Для подземных коммуникаций «восстановительные» условия создают с помощью электрохимической защиты: накладывают на защищаемый металл отрицательный (катодный) потенциал от внешнего источника тока, так что на металле прекращается процесс окисления.
Однако зачем нужно столько разных сложных способов защиты металлов? Разве нельзя просто покрасить металл или нанести на него эмаль?
Во-первых, все покрасить невозможно. А во-вторых… Возьмем для примера эмалированную кастрюлю или автомобиль. Если кастрюля, вырвавшись из рук, с грохотом упадет на пол и отшибет себе эмалированный бочок, то под отколовшейся эмалью будет зиять «черный глаз», края которого постепенно окрасятся в предательский рыжий цвет — скол покроется ржавчиной. Не лучшая судьба ждет и автомобиль, если вдруг в его лаковом боку (а чаще на стыке с днищем) образуется небольшая дырочка в слое лака. Этот канал поступления к корпусу агрессивных агентов — воды, кислорода воздуха, сернистых соединений, соли — немедленно заработает, и корпус начнет ржаветь. Вот и приходится владельцам автомобилей делать дополнительную антикоррозионную обработку.
Так, может, проблема коррозии металлов решена? Увы, не все так просто. Любые коррозиестойкие сплавы устойчивы только в определенных средах и условиях, для которых они разработаны. Например, большинство нержавеющих сталей отлично выдерживают кислоты, щелочи и очень «не любят» хлориды, в которых они часто подвергаются местным видам коррозии — язвенной, точечной и межкристаллитной. Это очень коварные коррозионные разрушения. Конструкция из красивого, блестящего металла без намека на ржавление может однажды рухнуть или рассыпаться. Все дело в мельчайших точечных, но очень глубоких поражениях. Или же в микротрещинах, не видимых глазом на поверхности, но пронизывающих буквально всю толщу металла. Не менее опасно для многих сплавов, не подверженных общей коррозии, так называемое коррозионное растрескивание, когда внезапно конструкцию пронизывает огромная трещина. Такое случается с металлами, испытывающими длительные механические нагрузки — в самолетах и вертолетах, в различных механизмах и строительных конструкциях.
Крушение поездов, падение самолетов, разрушение мостов, выбросы газа и разливы нефти из трубопроводов — причиной подобных катастроф нередко становится коррозия. Чтобы ее укротить, предстоит еще много узнать о сложнейших природных процессах, происходящих вокруг нас.
УДИВИТЕЛЬНЫЙ КЕТЧУП
Группа физиков под руководством Сяна Чэна из Корнеллского университета (США) обнаружила, что высокая вязкость кетчупа, краски и других тягучих жидкостей возникает из-за хаотичного движения частиц и крупных молекул в их составе. Если такую жидкость размешать или встряхнуть, то быстрые молекулы воды или других растворителей увлекают за собой тяжелые частицы и «подавляют» броуновское движение, из-за чего их густота уменьшается.
Вязкость «обычных» жидкостей, таких как вода или спирт, не зависит от внешних условий. В отличие от них, псевдопластичные жидкости — кетчуп, кровь или краска — теряют присущую им густоту при встряхивании, сжатии или любом другом физическом воздействии. Это связано с тем, что такие жидкости очень неоднородны по своему составу и состоят из крупных молекул, образующих сложные пространственные структуры.
Сян Чэн и его коллеги изучили движение отдельных частиц в псевдопластичной жидкости при помощи сверхбыстрого микроскопа. Ученые подготовили специальную смесь из воды и глицерина, в которой они «растворили» небольшое количество шариков из оксида кремния диаметром 0,96 микрометра. Исследователи ввели внутрь этих сфер немного флуоресцирующего вещества, свечение которого можно было обнаружить при помощи микроскопа.
В статье отмечается, что в условиях покоя в искусственном «кетчупе» шарики-«молекулы» беспорядочно двигаются и постоянно сталкиваются друг с другом, что является причиной высокой вязкости таких жидкостей. При встряхивании сосуда или при помешивании раствора шарики «кетчупа» увлекаются потоком воды и двигаются в одном направлении с ней, из-за чего броуновское движение утрачивает силу.
Кроме того, авторы статьи смогли понять, почему раствор крахмала — своеобразный антипод кетчупа и краски — густеет при помешивании. Оказалось, что крупные частицы в дилатантных жидкостях — к примеру, зерна песка на мокром берегу моря или крахмал в воде — не «успевают» за быстрыми молекулами воды или других растворителей, сцепляются друг с другом и мешают движению жидкости.
Исследователи полагают, что их открытие поможет биологам лучше понять, как изменяется вязкость крови и лимфы при движении по кровеносной системе организма, а также позволит улучшить качество красок, кетчупов и средств для мытья посуды.
10 ОСНОВНЫХ ГЕОЛОГИЧЕСКИХ ФАКТОВ
1. Возраст Земли впервые определен в 1956 г. по соотношению различных изотопов свинца в двух железных и трех каменных метеоритах. Линия в координатах 207РЬ/ 204РЬ — 206РЬ/ 204РЬ, проходящая через эти метеориты, определяет возраст и называется геохро-ной. Средний состав земной коры лежит на геохроне, указывая на то, что возраст Земли близок возрасту метеоритов. Самые древние минералы метеоритов имеют возраст -4,6 млрд. лет, а самые древние минералы Земли — возраст ~4,4 млрд. лет.