Парадоксы климата. Ледниковый период или обжигающий зной?
Шрифт:
Одной из самых сильных таких связей является связь «температура – альбедо»: при повышении температуры нижней атмосферы тают снега и льды, в результате чего альбедо уменьшается, а значит, растет доля солнечного излучения, поглощенного поверхностью; она нагревается и увеличивает температуру нижней атмосферы, образуя таким образом положительную обратную связь. Эта связь играет очень важную роль в современном глобальном потеплении климата.
Некоторые обратные связи в климатических факторах ведут себя не одинаково при разных условиях: так, потепление нижней атмосферы, увеличение ее влагосодержания приводят к росту балла (количества) облаков. Если это плотная (слоистая) облачность, она отражает солнечную радиацию и меньшее количество ее энергии поступает на подстилающую поверхность, которая соответственно охлаждается, – имеет место отрицательная обратная связь. Однако при росте балла облаков верхнего яруса, которые пропускают солнечную радиацию почти без задержки, но хорошо поглощают и переизлучают вниз и вверх тепловую, длинноволновую радиацию, поток суммарного
Итак, круг процессов, способных зримо повлиять на климат Земли, очерчен. Процессы эти очень разные по своей природе, масштабам и степени воздействия на климат. Чтобы каким-то образом их систематизировать, выстроив в порядке значимости, нужен универсальный критерий. Требования к такому критерию очевидны. Он должен быть способным «приводить к единому знаменателю» самые разнородные явления и процессы. В то же время отличаться простотой и наглядностью, поскольку пользоваться им предстоит не только специалистам, но и всем заинтересованным лицам: политикам, бизнесменам, экономистам, журналистам. И все это должно быть сосредоточено «в одном флаконе», то есть в одной характеристике, имеющей ясный физический смысл. За последние 20 лет на эту роль пробовался добрый десяток индексов. Ни один из них, надо признать, до конца не удовлетворяет всем вышеперечисленным условиям, хотя каждый имеет свои преимущества перед «соперниками» и бывает удобен в том или ином направлении исследований. И все же в этом конкурсе побеждает радиационный форсинг (от англ. forcing – воздействие) – чаще других цитируемый в научной периодике и, следовательно, самый популярный индекс.
Радиационный форсинг определяется как
F= Fвозм – Fневозм,
где F – разность потоков коротковолнового и длинноволнового излучения на уровне тропопаузы – границы раздела
тропосферы и стратосферы; F демонстрирует, насколько нарушен баланс между солнечной и уходящей от земной поверхности радиацией на этом уровне (невязку). Расчеты показывают, что F чутко реагирует на различные природные явления и катаклизмы, будь то крупные извержения вулканов или лесные пожары, усиление солнечной активности или массовый выброс в атмосферу парникового газа.
Радиационный форсинг – это разность величины F в возмущенном (Fвозм) и невозмущенном (Fневозм) состояниях. Например, для случая с вулканом в качестве Fневозм мы должны взять невязку баланса радиации в момент, предшествовавший извержению, а в качестве Fвозм – аналогичную невязку, но после того, как оно произошло. По существу радиационный форсинг представляет собой аналог частной производной в математике.
Чтобы дать представление читателю о значимости различных явлений для изменения климата, далее приведена таблица 4, в которой содержатся оценки значений радиационного форсинга, обусловленного отдельными климатоформирующими факторами, причем все они, за исключением солнечной радиации, относятся к разряду антропогенных. В последнем столбце указана суммарная оценка их совокупного действия.
Данные, представленные в таблице 4, предметно (в конкретных цифрах) подтверждают некоторые высказанные ранее положения.
А именно: превалирование углекислого газа над остальными парниковыми газами, значительный вклад атмосферных аэрозолей, а также разное по знаку влияние тропосферного и стратосферного озона на парниковый эффект.
Таблица 4. Оценки величин радиационного форсинга (Вт/м2) некоторых климатоформирующих факторов на 2005 г. (относительно «доиндустриального» периода – 1750 г.)*
* Концентрации CO2, СН4, N2O измерены (взяты) из ледовых кернов, ХФУ тогда не было (они почти все антропогенного происхождения и начали массово выпускаться в 1930-е), озон – модельный, остальное – либо косвенные, либо модельные оценки
Итак, мы уже имеем каркас здания наших знаний о явлениях и процессах, обеспечивающих современное состояние климатической системы. Здания, которому предстоят отделочные работы, а не исключено, и какая-нибудь реконструкция. Но неизменно на всех этапах, от закладки здания до «доведения его до ума», строительным материалом – «кирпичиками» – всегда являлись и будут являться многочисленные и разноплановые данные климатического мониторинга.
Глава восьмая
Дом строится по кирпичику
Мы строили, строили и наконец…
Измерения – основа климатологии
Климатология, как и другие связанные с ней научные дисциплины, полностью зависима от количества и качества наблюдений за климатом нашей планеты. Именно по результатам измерений мы судим о климате прошлого и настоящего в разных уголках земного шара, о его реальных изменениях, строим предположения, каким он станет в будущем – ближайшем и отдаленном. При этом с каждым годом нам требуется все больший объем информации: во-первых, чем продолжительнее ряд наблюдений, тем надежнее статистические оценки и выводы, полученные при обработке такого ряда; во-вторых, для описания текущего состояния климата (и
Математическое моделирование – едва ли не главное направление в современных исследованиях климата. Постоянное совершенствование моделей обычно сопряжено с увеличением их детализации, а как следствие, и с ростом потребности в более подробных сведениях о значениях метеорологических и климатических элементов. Сегодня поток поступающей информации можно сравнить с бесперебойно работающим конвейером, а начиналось все так.
Первые шаги в организации мониторинга погоды в России были предприняты еще в начале XVIII столетия. В 1722 г. по указу Петра I начались систематические наблюдения за погодой на флоте (сохранились записи, сделанные самим Петром I во время его пребывания в Риге). После учреждения Петербургской академии наук эта работа была поручена ее членам. Результаты ежедневных измерений температуры воздуха в Санкт-Петербурге существуют с середины XVIII века. В это же время была создана сеть из 30–40 пунктов наблюдений в Европе, которая просуществовала до XIX века. Систематические наблюдения за погодой были особенно важны для аграрной России с ее огромной территорией и разнообразными природными условиями. Большую роль в организации магнитных и метеорологических обсерваторий на Урале и в Сибири сыграл академик А. Я. Купфер (1799–1865). На таких станциях два-три раза в сутки проводились измерения температуры воздуха, атмосферного давления, скорости и направления ветра, количества осадков. Однако все еще не существовало научного центра, где могли бы обрабатываться результаты наблюдений за погодой в различных районах огромной империи. И он появился. В 1849 г. по указу Николая I была учреждена Главная физическая обсерватория (ныне – Главная геофизическая обсерватория им. А. И. Воейкова, старейшее учреждение Гидрометслужбы России) «… для производства физических наблюдений… и вообще для исследований России в физическом отношении». Любопытно, что этот документ был подписан 1 апреля (по старому стилю), что дало повод шутникам называть этот день «днем синоптика». Первым директором обсерватории стал Купфер. В соответствии с высочайшим указом, результаты измерений на станциях за несколько месяцев посылались в обсерваторию, где они проверялись и систематизировались перед последующей публикацией. Однако в первое время эти данные были весьма несовершенными: сроки наблюдений не выдерживались, среди разнокалиберных приборов не было эталонных, поэтому их проверки проводились редко. Наблюдения на станциях, как правило, вели неспециалисты – помещики, представители городской и сельской интеллигенции (учителя, врачи, фельдшеры, агрономы). Впрочем, работали они бесплатно, оплачивать же труд наблюдателей, и то частично, стали лишь в конце XIX века. Создание полноценной сети метеорологических станций началось только в 1872 г. усилиями тогдашнего директора Главной физической обсерватории Г. И. Вильда (1833–1902). Почти сразу заработала сеть из 73 станций. Ранее профессор Университета в Берне Вильд создал небольшую сеть станций для измерения температуры и давления воздуха в Швейцарии. Его усилиями были организованы Первый международный метеорологический конгресс в Вене в 1873 г. и Конгресс международной метеорологической организации (ММО), прошедший в 1879 г. в Риме. Вильд был избран первым президентом ММО – организации, осуществившей большую работу по стандартизации метеорологических наблюдений. ММО просуществовала до 1950 г., когда была заменена межправительственной Всемирной метеорологической организацией (ВМО, WMO). Во второй половине XIX века сеть наземных метеорологических станций заработала во всех развитых странах мира, и 1850– 60 гг. считаются временем начала получения инструментальных сведений о погоде во внетропических северных широтах. А метеорологическая сеть России по охвату большой территории и качеству данных справедливо считалась одной из лучших. Вильд был не только хорошим организатором, он лично принимал участие в создании нескольких метеорологических приборов: знаменитый «флюгер Вильда», который измерял скорость ветра по углу отклонения легкой и тяжелой пластин, подвешенных на горизонтальной оси, служил (и не только в России) вплоть до недавнего времени (рис. 17 цв. вклейки). Любопытно, что Вильд за 27 лет своего директорства и членства в Петербургской академии наук так и не освоил русский язык – большинство сотрудников обсерватории были немцы или жители Прибалтики, знавшие немецкий язык, на котором и велось делопроизводство. С властями директор общался по-французски или через своего заместителя, в этом обсерватория не была исключением среди научных учреждений Санкт-Петербурга того времени. И только после ухода Вильда в 1894 г. в обсерватории заговорили по-русски.
Таким образом, уже почти больше столетия сеть станций используется для измерения метеорологических характеристик, позднее в этих же целях стали применяться аэростаты и радиозонды, а с 1970-х гг. – и спутники, причем данные, полученные с разных спутников, достаточно плохо согласуются. Архивы климатических элементов формируются путем сбора, систематизации, проверки (контроля) и обработки данных, полученных из вышеперечисленных источников. Эти данные сегодня часто представляются в виде так называемых ре-анализов. Ре-анализ – это результат ассимиляции (усвоения) данных измерений какой-либо метеорологической величины, полученных в одни и те же моменты времени в местах нахождения пунктов измерений. Цель ассимиляции – создание максимально близкого к измеренному поля значений этой метеорологической величины во всех узлах регулярной географической сетки (т. е. узлах, отстоящих друг от друга на равное число градусов как по широте, так и по долготе). Поскольку пункты измерений (а значит, и исходные данные измерений) расположены далеко неравномерно, а в ряде регионов и вовсе отсутствуют, этот недостаток восполняют специальными расчетами с помощью трехмерных моделей общей циркуляции атмосферы. Процедура ассимиляции – комбинирование данных наблюдений с результатами модельных расчетов. В последующем полученные поля используются как в модельных исследованиях, так и в приложении к оперативным задачам сельского хозяйства, техники, строительства, транспорта, авиации и пр., чем занимается специальная наука – прикладная климатология.