Пчёлы выбирают металл
Шрифт:
С другой стороны, из второго закона сера Иссака Ньютона на фонарик действует сила тяжести:
Fт = g m = g pсо2 Vф,
где Fт – сила тяжести,
g – ускорение силы тяжести,
m – масса тела,
рсо2 – плотность диоксида углерода,
Vф – внутренний объём фонарика.
Разность между силой Архимеда и силой тяжести будет подъёмная сила нагретого газа СО2.
Fп = Fa – Fт = g pв Vф – g pсо2 Vф = ( pв – рсо2) g Vф.
Рассмотрим ситуацию, когда подъём фонарика остановился, и он завис. Следовательно, в этот момент подъёмная сила равна нулю, а значит,
рв – рсо2 = 0 или рсо2/рв = 1.
Эта формула описывает граничное условие подъёма фонарика.
При этом на плоскости среза нижнего отверстия фонарика установилось кратковременное равновесие плотностей диоксида углерода и воздуха. При дальнейшем остывании диоксида углерода, газ начнёт вытекать из отверстия фонарика, как более тяжёлый, а воздух станет заполнять образовавшуюся зону разряжения. Изменению газового состояния внутри фонарика будет соответствовать медленное опускание, по нарастающей вниз, самого фонарика. Когда воздух полностью заполнит внутренний объём, фонарик начнёт падать с ускорением свободного падения (за вычетом силы сопротивления и влияния ветровой нагрузки).
В формуле граничного условия при равенстве плотностей диоксида углерода и воздуха найдём зависимость их температур. Обратимся к молекулярно-кинетической теории газов и, используя формулу Менделеева – Клапейрона для идеального газа, распишем плотности диоксида углерода и воздуха.
P V = m R T/ М , m = p V, следовательно, р = М Р/ R T.
рв = Мв Р/ R Tв, рсо2 = Мсо2 Р/ R Tсо2,
где рв – плотность воздуха в граничной зоне,
Мв – молярная масса воздуха 29
Р – давление в граничной зоне,
R – универсальная газовая постоянная,
Тв – температура воздуха на границе соприкосновения,
рсо2 – плотность диоксида углерода в граничной зоне,
Мсо2 – молярная масса диоксида углерода 44,
Тсо2 – температура диоксида углерода на границе соприкосновения.
Подставим в формулу граничного условия полученные значения плотностей воздуха и диоксида углерода, имеем:
Tсо2 / Тв = Мсо2 / Мв = 44 / 29 = 1,51!
Выходит, для того чтобы диоксид углерода стал легче воздуха его необходимо нагреть до температуры более чем в полтора раза превышающей температуру окружающей среды.
Но, “ вернёмся к нашим баранам”, а не то ли это число 1,5, которое нам необходимо было запомнить?
По данным Г. Эша (1961) температура тела пчелы (груди) в активном состоянии выше температуры зоны её нахождения на 8-12оС. Тогда, если рассматривать значение верхнего интервала температур в клубе (28оС), когда пчёлы в активном состоянии, каждая пчела выдыхает воздух с температурой выше 37оС. Выдохнутый тёплый воздух и тёплый воздух от разогретого тела пчёл поднимаются вверх и заполняют все пустоты, находящиеся над пчелиным клубом, а также окунают в эту теплоту и сам клуб. Таким образом, создаётся тепловая ловушка пчелиного роя.
Пчёлы выдыхают воздух с большим содержанием диоксида углерода и парами метаболической
Как мы уже установили, условием равновесного существования двух газовых сред, нагретого диоксида углерода и воздуха, является уравнение
рсо2 / рв = 1,
тогда условием циклического существования в тепловой ловушке пчелиного роя пояса диоксида углерода станет неравенство
рсо2 / рв <= 1.
Плотность газа является функцией от температуры, следовательно, гарантом, выполнения условия циклического существования пояса диоксида углерода, в пчелином гнезде, есть температурное неравенство:
Т со2 >= 1,5 Тв.
Таким образом, в дупле и при правильной сборке пчелиного гнезда в улье, падение температуры наружного воздух ниже 14оС приводит к образованию, в нижней части тепловой ловушки, циклически устойчивого воздушного пояса с повышенной концентрацией диоксида углерода. Я написал “устойчивого”, потому что условия для выполнения неравенств, с плотностями и температурами, всегда были в гнезде и ранее, но имели неустойчивый кратковременный характер, и воздушный пояс диоксида углерода находился выше зоны расплода, но об этом далее.
Окунание пчёл в воздух с повышенной концентрацией диоксида углерода и низким содержанием атмосферного кислорода, как уже рассматривалось, затормаживает активность пчёл на клеточном уровне и пчелиная семья, снижая энергетические затраты, собирается в клуб.
Группа украинских исследователей под руководством В. А. Гайдара (1993), при непрерывном наблюдении за пчелиными семьями в зимний период, установила циклический характер кратковременной активности пчёл. Активность пчёл наблюдалась в разных ульях с интервалом от 10 до 19 часов.
Этот факт подтверждает циклический характер существования в тепловой ловушке воздушного пояса диоксида углерода. Временные различия, отличие интервальной активности пчёл в разных ульях, указывают на разные условия, созданные пчеловодом для зимовки каждой из семей. Чем длиннее временной интервал покоя пчелиной семьи, тем лучше условия зимовки.
Как функционирует цикл воздушного пояса диоксида углерода в тепловой ловушке? Каждый цикл делится на две фазы, активная и пассивная. Активная фаза проходит в воздушной среде при воздействии на пчёл атмосферного кислорода. В активной фазе все пчёлы семьи нарабатывают тепло для заполнения объёма тепловой ловушки, естественным путём происходит заполнение объёма гнезда воздухом с повышенным содержанием углекислого газа. В конце активной фазы клуб пчёл, погружённый в воздух с повышенной концентрацией диоксида углерода, прекращает выработку тепла и переходит в состояние пассивного покоя.