Чтение онлайн

на главную

Жанры

Шрифт:

Да и в последующие несколько месяцев, пока фрицы пробовали разные методики ИК-маскировки, все было более-менее нормально — количество приборов, их долговечность, чувствительность — все эти параметры росли довольно быстро, так как мы наработали экспериментальную базу, позволившую хоть как-то управлять параметрами приборов. Еще бы — мы ведь не просто заменяли чувствительные элементы — мы накапливали статистику — изучали химический состав вышедших из строя или резко ухудшивших свои показатели элементов, состав газа в вакуумных баллонах, если это был вакуумный элемент. И повышали жесткость технологических допусков — применяли все более сухие газы, все более высокое вакуумирование, все более длительную дегазацию, чтобы детали меньше выделяли газов во время работы.

Мы в свою очередь тоже развивали тактику применения новых приборов. Так, на фронте в километр мы сосредоточивали до двадцати снайперов, до пятидесяти ИК-приборов — и с этим всевидящим оком пехота подбиралась к немецким окопам на дистанцию гранатного броска, тогда как снайперы отстреливали любую тепловую тень над брустверами, ну а САУ — высунувшиеся танки. Единственное, с чем мы не сразу разобрались — это заградительный огонь вслепую и косоприцельные амбразуры. Немецкие корректировщики навострились высовываться на мгновение, и каждый раз — на новом месте, так что они все-таки могли наблюдать нейтралку и сообщать артиллерии

примерные координаты целей. Ну а косоприцельные амбразуры были просто недоступны для фронтального огня, так что немецкие пулеметчики могли внезапно обрушить фланговый огонь на наши цепи. Правда, эти цепи подбирались по пластунски, поэтому урон был невелик, но вот слитную атаку гранатами эти пулеметы сорвать могли. Ну, тут уж нам оставалось только тренировать тактическое мастерство командиров, чтобы они расставили пехотинцев таким образом, чтобы те атаковали выступы немецких позиций, в фасах которых и размещались эти амбразуры, да при приближении к немецким окопам выставлять группы огневого подавления. А против артиллерии все-таки приходилось привлекать штурмовики и давить артиллерийским и минометным огнем возможные дислокации немецких арткорректировщиков. Как бы то ни было, ИК-техника позволила нам в относительной безопасности натаскивать бойцов.

Так что постоянное совершенствование шло по всем фронтам — и в тактике применения нового оборудования, и в оборудовании. Ведь и сама поликристалличность пленок была не единственным аспектом их фоточувствительности — большую, огромную роль играл кислород. И не просто кислород, а адсорбированный на поверхности кристаллов. То есть не нормальные, химические, соединения свинца с кислородом, которые было легко получить — важен был кислород, который просочился в межзеренное пространство и "налип" на грани кристалликов. Как мне объясняли наши ученые, он создавал локальную ловушку для неосновных носителей — электронов. Прилипая к поверхности кристалла, он создавал эдакую яму с положительным потенциалом, и выбитые фотонами электроны устремлялись к таким ямам, отчего рекомбинация с дырками шла менее интенсивно, время жизни дырок увеличивалось — увеличивалась и фоточувствительность. Конечно, до определенного предела, но все-таки. Причем ученые уверяли, что важен именно поверхностный кислород, а не тот, что продиффундирует вглубь кристаллов или же вообще будет в соединении со свинцом — "Да мы проверяли — при температурах ниже жидкого кислорода диффузии нет, а пленки сенсибилизируются, значит, важен кислород, что находится на поверхности. И с оксидами свинца тоже проверяли — не они это". Ну, я им верил — не лезть же в эти дебри самому. И вот с этим поверхностным кислородом было не очень просто — его удерживали на поверхности силы Ван-дер-Ваальса, то есть связь с пленкой была довольно слабой — нагрей чуть посильнее, и полученная тепловая энергия легко оторвет кислород от кристалла — и все — плакала наша фоточувствительность. Кислород надо было беречь. А перед этим — насытить им межкристалльное пространство. Получалось немного прикольно — посыпь пленку кислородом — она и станет фотоэлементом. Вот только нашим ученым было не до смеха. Тем более что они выдвинули и другую теорию фоточувствительности — согласно ей кислород, напротив, создавал отрицательное поле, которое вытягивало из массива кристаллов дырки и отталкивало электроны. В общем, единство среди ученых наблюдалось только в том, что они считали кислород тем довеском, который и придавал фоточувствительность элементам, а вот как он это делал — тут продолжались споры. Не было единства и по части технологии изготовления этих элементов.

Глава 13

Сначала мы пробовали так называемый "мокрый" метод, который применяли и немцы — химическое осаждение пленок из растворов. Берутся свинцовый сахар (гидрат ацетата свинца, он же — уксуснокислый свинец), тиомочевина, едкий натрий, эти растворы смешиваются в емкости, и на ее дно, точнее — на подложку — через минуту-полторы начинает выпадать сернистый свинец. Подложку достают, промывают, и осаждают таким же образом второй слой, если надо — третий — мы доходили до шести. Потом осторожная сушка — каждого слоя или уже всего элемента, но чтобы он не прогревался свыше ста градусов, чтобы находящаяся внутри слоев вода не разорвала пленку, потом выдержать годик, пока содержание кислорода придет в равновесие — чтобы он проник между кристаллами, активировал их, и характеристики элемента пришли в норму — и - вуаля! — ИК-детектор готов! Вот это "выдержать годик" нас и не устраивало. Но тогда мы еще не знали, что если вводить другие кислородосодержащие примеси, то время стабилизации параметров существенно сокращается.

Собственно, до войны эту технологию использовали все — и американцы, и англичане, и немцы. Соответственно, всех это не устраивало, точнее, только немцы знали, что надо выдерживать элементы год, у остальных были те же проблемы с работой свежеиспеченных приборов, поэтому что англичане, что американцы серносвинцовые элементы не жаловали. И их можно было понять — были ведь и другие вещества, подходящие для работы в ИК-спектре — селениды, таллофиды — то есть элементы из сернистого таллия — в СССР их изучал Сивков еще в тридцать восьмом. Англичане работали именно по ним. Но таллофиды были очень инерционны и зависели от температуры. Только сульфид свинца обладал приемлемой температурной зависимостью и малой инерционностью, позволявшей применять его в механических сканирующих системах, а других сейчас, чтобы получить картинку, и не было — электронным лучом по элементу не поводишь, да и размер его мал — от миллиметра до сантиметра в лучшем случае — при больших размерах характеристики начинали сильно плавать по разным участкам пленки. Так что — хочешь нормальную ИК-технику — используй сернистый свинец. Но, так как "все знали", что серносвинцовые элементы пока ни у кого нормально не получались, то по ним особо и не работали — зачем тратить время на технологию, которая скорее всего не выстрелит? Те же англосаксы в этой области копошились очень неспешно, хотя я-то помнил, что именно серносвинцовые ИК-детекторы стояли на Сайдуиндере — американской ракете воздух-воздух с ИК-самонаведением. То есть им удалось достичь нормального быстродействия, а ведь это лет через десять, ну может пятнадцать, то есть технологии скорее всего ушли не так уж далеко от наших. И вот это мое "знал" заставляло меня продавливать работы по этим элементам несмотря на скепсис опытных людей. На мое счастье, у нас подобралось несколько молодых специалистов, которые, наоборот, не знали обо всех сложностях. Соответственно, в работе их ничто не тормозило, а моя уверенность в успехе, наоборот, подталкивала их к исследованиям. Знание и незнание сложились и дали результат — бывает и так.

И вскоре мы действительно выяснили, насколько сернистый свинец лучше. Так, при частоте модуляции освещения всего лишь в сто герц чувствительность селеновых фотосопротивлений падала в три, а таллофидных — в два раза. Для сернистосвинцовых даже на десяти килогерцах падение составляло всего тридцать процентов, а вплоть до килогерца — пять-десять процентов — ну, тут многое зависело от технологии изготовления. Скажем, позднее мы пробовали создавать "мокрые" фотосопротивления с гидразином в качестве кислородсодрежащей примеси — так они не могли работать на частотах выше килогерца. А вот гидросульфид натрия давал быстродействующие элементы, но к тому времени это было уже неинтересно. Да и одним элементом отследить быстродвижущиеся цели было проще — если модулировать сигнал от цели. Поэтому-то на сульфиде свинца и сошелся клин — только он обеспечивал приемлемые характеристики работы. Так что — если не работать по этому веществу — не будет нормальной ИК-техники — как и было у англосаксов. А если работать — нужны другие технологии, не "мокрые", как у немцев, а "сухие" — как у нас.

Естественно, сначала мы по этой технологии практически ничего не знали, имея лишь скудные сведения из тех статей, что нам удалось обнаружить в библиотеках — в журналах "Электричество", "Журнал Технической Физики" и так далее. Поэтому мы просто напыляли пленки в вакууме и потом пытались понять — что же мы получили. Соответственно, наши элементы получались очень нестабильными — то работают нормально, если вообще работают, а потом — бац! — и сдыхают. А то изначально работают еле-еле, но зато стабильно. Потом, весной сорок второго, наши специалисты пообщались Борисом Тимофеевичем Коломийцем — уже тогда видным специалистом по фотоэлементам — да он уже в тридцать восьмом создал солнечную батарею на основе сернистого таллия! Я, когда об этом узнал, немного обалдел. Правда, потом мне рассказали, что еще в 1839 Александр Эдмон Беккерель, сын того самого Антуана Сезара Беккереля и отец Антуана Анри, тоже Беккереля, и тоже — "того самого", открыл фотогальванический эффект и создал действительно первую солнечную батарею. Потом, в 1883, Чарльз Фриттс создал свою солнечную батарею из селена, покрытого тонким слоем золота. Так что я сказал "Солнечным батареям быть!" и запустил проект по их исследованию — естественно, не на каких-то там селенах и таллиях, а на нормальном — для меня — поликристаллическом кремнии, благо поликристаллические пленки мы уже исследовали. Так вот, Коломиец рассказал нашим специалистам про фотосопротивления много нового и интересного, и после двухмесячной стажировки Физико-техническом институте АН СССР они приехали довольно воодушевленные и бурлящие будущими подвигами на ниве науки. Да и потом, когда мы прихватили на артиллерийских позициях немецких специалистов из лабораторий фирмы ELAK — Электро-акустической фирмы из Киля, те также рассказали, что и как — тогда-то мы поняли, из-за чего у нас были проблемы.

Но к тому моменту мы работали уже по другим технологиям изготовления элементов — вакуумной и физической. Точнее, они обе были и вакуумными, и физическими — поликристаллическая пленка сульфида свинца в обоих случаях получалась осаждением при нагреве в вакууме. Но температуры и дальнейшая технология были разные, поэтому как-то так и сложились такие названия. Сам принцип таких физических методов родился как раз в процессе моих попыток создать биржу проектов, когда я еще бегал по лабораториям сам, пытаясь разрулить возникавшие проблемы силами других специалистов. Осаждением пленок в вакууме мы занялись, естественно, с моей подачи — я тренировал народ для будущих прорывов в микроэлектронике, поэтому с конца сорок первого сутками напролет сначала пара десятков, а к весне сорок второго — уже более трехсот человек только и делали, что тренировались испарять и осаждать разные вещества. Пока — только чтобы набить руку, потренироваться в методах получения пленок и исследовании их свойств. Ну, был и выхлоп — мы стали производить резисторные матрицы для радиоаппаратуры, что уменьшило трудоемкость ее изготовления, массу и размеры, затем пошли конденсаторные матрицы — для регистровой памяти наших первых ЭВМ, еще на лампах. В общем, работали не впустую. И вот, как-то поучаствовав в очередной планерке разработчиков ИК-детекторов, я и спросил:

— Вам ведь нужна поликристаллическая пленка?

— Да.

— А не все-ли равно — как она будет получена?

— Все делают химическим осаждением.

— А если попробовать напылять? В вакууме.

— Можно и попробовать…

Так я и свел две ветки исследований. И результаты этого научного скрещивания стали прорывом в нашей ИК-технике.

"Вакуумная" технология была незамысловатой. Делалась стеклянная колба — сантиметр-два в диаметре и длиной пару-тройку сантиметров, на ее плоский торец наносилось токопроводящее покрытие — тонкий слой золота. К нему припаивался контакт и выводился наружу. Затем внутрь колбы засыпался порошок сернистого свинца, система подсоединялась к вакуумному насосу, воздух откачивался в течение часа-полтутора-двух, и затем порошок сернистого свинца нагревался до шестисот-семисот градусов в вакууме — при этом он возгонялся и оседал на охлаждаемый стеклянный торец — это покрытие и становилось фоточувствительным элементом. Его еще надо было активировать, прогрев в разреженной среде кислорода при температуре в триста-четыреста градусов. Потом наносился второй контакт из золота — внутрь вводился микротигель, из которого золото испарялось и оседало на фоточувствительной пленке, находившейся с внутренней стороны колбы. Затем к этой пленке припаивался второй вывод, колба запаивалась и отсоединялась от вакуумной системы — и - вуаля! — фоточувствительный элемент готов!

Один из десяти в лучшем случае. И еще пара-тройка могла работать какое-то время — от пяти минут до нескольких часов — на них, а особенно на остальных — совсем уж бракованных — все было не слава богу — либо отпаивались контакты, либо контакты не пропаивались, либо кусок золотой пленки с внутренней стороны имел разрывы, либо она отслаивалась, либо осажденная пленка при насыщении кислородом слишком сильно перекристаллизовывалась и изменяла свои свойства, а то и рвала пленку из золота — выхлоп был очень незначительным. Но мы продолжали исследования. В начале весны сорок второго по теме вакуумных фоторезисторов только на их изготовлении трудилось уже более сотни человек — порядка пятнадцати исследовательских групп, и при длительности полного цикла изготовления одной партии из десяти штук в шесть часов они умудрялись изготавливать по четыреста элементов в сутки. При этом они использовали шестьдесят насосов низкого и среднего вакуума, двадцать — высокого и пять — сверхвысокого, около десяти паяльных ламп, сорока нагревателей ну и прочей техники по мелочи. И потом эти элементы препарировало еще более трех сотен лаборантов. Они исследовали вольтамперные характеристики, характеристики чувствительности, скорость деградации при повышенной температуре. Каждый прибор обнюхивался со всех сторон — размер зерна, состояние контактов и напыления, химический состав — все подвергалось тщательному изучению. Причем в каждой партии из десяти штук приборы исследовались через заданные планом эксперимента промежутки времени — часть — сразу после изготовления, часть — через сутки, неделю, месяц — мы пытались понять, как, скажем, длительность выдержки при высокой температуре повлияет на деградацию характеристик прибора. И таких параметров было много — в месяц исследовалось более десяти тысяч элементов — то есть в среднем по одному прибору в сутки на одного лаборанта — как обычно, мы пытались с помощью массовых исследований быстро вывести технологию на приемлемый уровень.

Поделиться:
Популярные книги

Я все еще граф. Книга IX

Дрейк Сириус
9. Дорогой барон!
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Я все еще граф. Книга IX

Великий князь

Кулаков Алексей Иванович
2. Рюрикова кровь
Фантастика:
альтернативная история
8.47
рейтинг книги
Великий князь

Камень Книга седьмая

Минин Станислав
7. Камень
Фантастика:
фэнтези
боевая фантастика
6.22
рейтинг книги
Камень Книга седьмая

Ох уж этот Мин Джин Хо – 3

Кронос Александр
3. Мин Джин Хо
Фантастика:
попаданцы
5.00
рейтинг книги
Ох уж этот Мин Джин Хо – 3

Под маской моего мужа

Рам Янка
Любовные романы:
современные любовные романы
5.67
рейтинг книги
Под маской моего мужа

Измена. За что ты так со мной

Дали Мила
1. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. За что ты так со мной

Идеальный мир для Лекаря

Сапфир Олег
1. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря

Разведчик. Заброшенный в 43-й

Корчевский Юрий Григорьевич
Героическая фантастика
Фантастика:
боевая фантастика
попаданцы
альтернативная история
5.93
рейтинг книги
Разведчик. Заброшенный в 43-й

Идеальный мир для Лекаря 10

Сапфир Олег
10. Лекарь
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 10

Газлайтер. Том 15

Володин Григорий Григорьевич
15. История Телепата
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Газлайтер. Том 15

Сердце Дракона. Том 11

Клеванский Кирилл Сергеевич
11. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
6.50
рейтинг книги
Сердце Дракона. Том 11

Неудержимый. Книга XIII

Боярский Андрей
13. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XIII

Покоритель Звездных врат

Карелин Сергей Витальевич
1. Повелитель звездных врат
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Покоритель Звездных врат

Идеальный мир для Лекаря 7

Сапфир Олег
7. Лекарь
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 7