Пережитое и передуманное
Шрифт:
Наблюдения окружающей природы уже тысячелетия приучили к этому человечество, но научно только теперь это окончательно признано. Мне кажется, однако, что до сих пор в геологии недостаточно принимается во внимание планетный характер нашей Земли — основные астрономические элементы ее: наклон ее оси вращения к эклиптике прежде всего, и расстояние ее в течение года от Солнца, одного из основных источников энергии биосферы и одного из основных регуляторов всех геологических, химических и биологических явлений в биосфере. Планетный характер Земли больше всего сказывается в биосфере.
Солнечная константа, определяющая эту энергию, отвечает 1,94 кал в минуту на 1 см 2на верхней границе «свободной атмосферы». Эго величина не постоянная, вопреки своему названию, но закономерно меняюицаяся. Во — первых, она зависит для Земли от расстояния Земли от Солнца. Ближе всего Земля к Солнцу 1 января — 22 949 радиусов, т. е. 146 207 000 км (в перигелии), а дальше всего — 3
Это кажущееся изменение солнечной константы под влиянием движения Земли, не зависящее от Солнца. Но возможно — допустимо — и реальное колебание солнечной константы, проявляющееся входе времени бытового. По — видимому, это колебание меньше, чем недавно думали. Колебания вероятны и в связи с солнечными пятнами.
Научно допустимы колебания этой константы в течение геологического времени. Несомненно, климатические изменения в геологическом времени идут в биосфере в течение более 2 млрд лет по крайней мере, причем жизнь в биосфере не уменьшается по своей мощности, но расширяется и проникает в новые, раньше безжизненные области планеты. Ее значение увеличивается в ходе геологического времени. Ее проявлением является эволюционный процесс изменения организмов в ходе геологического времени, а ее значение проявляется прежде всего в «напоре жизни», который выражается в резком механическом воздействии на окружающую среду живого вещества. Этот «напор жизни» производится прежде всего размножением, а затем — ростом. Мы наблюдаем его, когда лес надвигается на степь или степь надвигается на лес. Он может менять окружающую нас природу. То же явление в море мы видим в коралловых островах, которые строятся главным образом кораллами и известковыми водорослями. Они подготовляют почву для наземных организмов.
Напор живого вещества есть одна из самых мощных нам известных геологических сил. Жизнь есть создание солнечного луча, что так ярко и глубоко впервые установил Р. Майер (1814–1878) [115] .
Жизнь создает в окружающей ее среде условия, благоприятные для своего существования. Уже само непрерывное существоюние жизни с самых древних нам известных геологических отложений, с криптозоя, указывает, что климатические, прежде всего тепловые, условия биосферы коренным образом никогда не менялись. Климат в своих астрономических тепловых основах оставался неподвижным. Можно считать эмпирическим обобщением этот вывод.
115
Майер Юлиус Роберт (1814–1878) — немецкий врач и физик; один из первых сформулировал фундаментальный закон природы — закон сохранения и превращения энергии.
Мы не знаем никакого промежутка времени на нашей планете, когда на ней не было бы живого вещества, не было бы биосферы.
В метаморфических породах [116] , последним и окончательным продуктом которых является гранитная оболочка Земли, мы видим последний устойчивый продукт былых биосфер. Они образуются только на континентах.
Если нет следа катастрофического планетного изменения, связанного с изменением положения оси вращения планеты по отношению к плоскости эклиптики, нужно сделать вывод, что и световые свойства нашей планеты были те же, что и теперь, в течение всего геологического времени, более двух миллиардов лет минимум. Эти световые свойства чрезвычайно характерны. В предельных явлениях они могут быть выражены так: в окружении полюсов день и ночь длятся месяцами, на самом полюсе по полугодиям. На экваторе день и ночь равны двенадцати часам. От этих крайностей мы видим постепенные переходы.
116
Метаморфические породы — породы, изменяющиеся под влиянием химических, физических и механических факторов.
Но астрономические данные определяют только самые общие черты климата. Распределение океана и суши, морские течения, воздушная циркуляция в тропосфере и колебания ее химического состава вносят большие изменения в тепловой и световой астрономический климат. Это выявляется не только в живом веществе и в его эволюции, но и в зональности всех геологических явлений нашей планеты. Это понятие зональности, такое простое, введено в научную мысль впервые в почвоведении В. В. Докучаевым, но для явлений жизни идет в конец XVIII в., к работам И. Канта (1724–1804) и А. Гумбольдта [117] (1769–1859). Явления зональности характерны для поверхности биосферы, для твердой ее части.
117
Докучаев Василий Васильевич (1846–1903) — русский естествоиспытатель; создал научные основы почвоведения, открыл закон целостности и зональности географической среды, один из основоположников учения о единстве Земли и космоса. Кант Иммануил (1724–1804) — немецкий философ; сделал одну из первых попыток рассмотреть Землю и Солнечную систему — их возникновение и развитие. Гумбольдт Александр (1769–1859) — немецкий естествоиспытатель, географ и путешественник. Один из основателей географии растений и учения о жизненных формах.
Мы здесь встречаемся с резко выраженной химической неоднородностью, связанной с геохорами [118] . В геохорах она резко проявляется как на картах геологических, так и ботанических и зоологических. Эта неоднородность, химическая в первую очередь, проявляется в меньшей степени в гидросфере, но и здесь она связана с твердым субстратом — дном и берегами, проявляется особенно резко в морях и в шельфах.
В пределах климатических поясов мы можем различать с химической точки зрения биогеохимические провинции, понимание которых только что начинает входить в жизнь и значение которых, и научное и бытовое, должно расти с ходом времени. В меньшей степени неоднородность — мозаичность — в физикохимической структуре должна сказываться и в подземных частях суши. Эта область только захватывается научным знанием. Пройдет, должно быть, немного лет, когда можно будет дать ее общий вывод. Сейчас мы только можем учитывать ее существование.
118
Гeoxopa — понятие, которое ввел советский географ Лев Семенович Берг (1876–1950) для обозначения географических поясов или зон ландшафтов.
В ходе геологического времени мы наблюдаем для каждой местности резкие изменения климата, которые для нас, очевидно, с геологической точки зрения имеют основное значение и особенно резко, может быть, и исключительно, проявляются в биосфере. В геологии они выявляются в виде ледниковых и тесно связанных с ними озерных или дождевых периодов, мощность которых достаточна, чтобы в основных чертах изменить характер тепловых основ астрономического климата. Мы можем убедиться, что это явление проявляется уже в археозое, проявлялось несколько раз, и в настоящее время мы переживаем конец последнего ледникового периода, резко проявившегося в Северном полушарии, но отразившегося, например, на колебаниях уровня Тихого океана. Этот ледниковый период начался в третичной системе (в неогене), в плиоцене, может быть даже в конце миоцена, и длится по крайней мере 12–15 млн лет.
Мы видим, таким образом, что для планеты, взятой как целое, ледниковый период не есть период холода. Жизнь в это время мощно развивалась на планете, кроме относительно ограниченных участков суши и шельфов, покрытых льдом местами на высоту километров.
Характерно, что такие скопления материковых ледников происходили не только вблизи полюсов, но в некоторые из ледниковых периодов наблюдались и в местностях, близких к экватору. Например, в пермское время наблюдались в Индии и в Южной Америке. Это было примерно 190–220 млн лет тому назад (Шухерт и Денбар [119] ).
119
Шухерт — (1858–1942). У. Шухерт и К. О. Денбар. Schuchert С. And Dunbar С. О. Text Bouk of Geology. N. Y., 1933. P. 80. Денбар K. O. — американский геолог.
Мы видим здесь резкое проявление того химического соединения, которое определяет всю геологическую историю биосферы — воды. Биосфера как раз представляет собой область, где вода господствует и по массе, и по своему геологическому значению и где она свободно переходит из твердого в жидкое и газообразное состояния.
История геологии переполнена попытками объяснить ледниковые периоды с тех пор, как идея о ледниковых периодах после нескольких десятилетий одиночных высказываний (Л. Агассис и др.) в 1860–1870–х годах окончательно вошла в научную мысль (П. А.Кропоткин, Торелль, Ф. Шмидт [120] ). Можно сказать, что эти попытки до сих пор были неудачны. Искали объяснения в астрономических явлениях, допускали передвижение полюсов, движения материков и т. п. Мне кажется, что все такие попытки обречены на неудачу, так как становится ясным, что ледниковые периоды входят как закономерная часть в те критические периоды, о которых говорилось. Объяснения надо искать для этих критических периодов, а не для ледниковых, с ними связанных. Пока надо их принимать как эмпирический факт.
120
Агассис Жан Луи Рудольф (1807–1873) — швейцарский естествоиспытатель — геолог, зоолог и палеонтолог. Заложил основы учения о ледниковых периодах, обосновал гипотезу о существовании ледниковых эпох в истории Земли. Кропоткин Петр Алексеевич (1842–1921) — географ и геолог, исследователь Сибири; философ, революционер. Торелль Отто Мартин (1 828— 1900) — шведский геолог и палеонтолог, основные исследования посвящены изучению материкового оледенения.