Чтение онлайн

на главную

Жанры

Шрифт:

В России в настоящее самым большим энтузиастом в поисках эффективных антиоксидантов для продления жизни является академик Владимир Петрович Скулачев, директор Института физико-химической биологии Московского университета и президент Российского биохимического общества. В. П. Скулачев – один их крупнейших специалистов в области механизма окислительных процессов в митохондриях. Увлекшись сравнительно недавно геронтологией, он правильно предположил, что антиоксиданты, чтобы действовать эффективно, должны не просто проникать в тканевые среды, а влиять на процессы, происходящие в митохондриях. В его исследовательской группе было создано несколько таких препаратов, обобщенно называемых «иона ми Скулачева». Скулачев придерживается той теории старения, которая считает, что этот процесс запрограммирован в генах и реализуется через действие свободных радикалов, которые управляются разными программами в разных органах. Поэтому в его институте не проводятся традиционные клинические испытания, а делаются попытки омоложения отдельных органов и тканей, часто уже старых животных. «Ионами Скулачева» проводят экспериментальное лечение глаукомы и катаракты у старых животных (кошек, собак, кроликов, лошадей), пытаются задержать дегенерацию тимуса, вылечить склероз почек и преодолеть другие возрастные патологии [12]. В одной из последних публикаций сообщалось, что «ионы Скулачева» оказывают защитное действие на нервную систему [13]. Но это пока единичные опыты, которые нельзя воспроизводить в других лабораториях. Однако вокруг этих всего лишь предварительных исследований искусственно создана атмосфера сенсационности. В широкой прессе нередко появляются статьи о том, что Скулачев и его группа «нашли способ отменить механизм старения». Сам Скулачев в интервью «Жить долго и умереть молодым» пояснял: «Животные, которым мы давали препарат, доживали до глубокой старости в здоровом и активном состоянии, а потом вдруг в считаные дни или даже часы умирали» [14]. В конце 2009 г., в другом интервью, он сообщил: «Мы готовимся перейти к клиническим испытаниям нашего первого лекарственного препарата на добровольцах. Это еще не “таблетки от старости”, а пока лишь капли от некоторых старческих болезней глаз» [15].

Натуральные антиоксиданты в диете человека

Синтетические антиоксиданты никогда не подвергались правильно организованным клиническим испытаниям на людях, что обязательно для рецептурных лекарств. Некоторые исследователи занимались самолечением с помощью синтетических антиоксидантов, которые сами же проверяли в опытах на животных. Главная проблема синтетических антиоксидантов состоит в том, что они не являются компонентами нормального метаболизма, и организм не приспособ лен к их удалению. Молекула антиоксиданта, присоединяя кислород, должна удаляться или расщепляться на более простые компоненты. Но для этого в тканях нет специфических ферментов. Организм не приспособлен к удалению синтетических продуктов, которые не встречаются в природе. Синтетические радиопротекторы для работников атомной промышленности используются в особых условиях и в течение коротких периодов времени. Как геропротекторы их надо принимать регулярно в течение многих лет или даже в течение всей жизни. Но в этом нет необходимости, так как существуют многочисленные натуральные антиоксиданты в тех пищевых продуктах, которые человек потребляет ежедневно и для метаболизма которых в тканях есть необходимые ферментативные системы. Красное вино далеко не единственный и отнюдь не самый богатый источник природных антиоксидантов. В 1993 г. в Центре по изучению питания человека Тафтского университета в Бостоне (Tufts University) был разработан сравнительно простой тест для определения антиоксидантных способностей различных продуктов питания [16]. Гомогенизированный продукт приводился в контакт с источником свободных радикалов и каким-либо флюоресцирующим веществом. Присутствие антиоксиданта защищает флюоресценцию, реактивный кислород ее гасит, что позволяет определить способность продукта абсорбировать эти радикалы (oxygen radical absorbance capacity, или сокращенно ORAC). Этот тест был одобрен Национальным институтом здоровья США. ORAC выражается количеством единиц на 100 г продукта. Например, антиокислительная способность чернослива оценивалась в 5 770 единиц, черной смородины – в 1 650, а красного винограда – лишь в 739. Такой же показатель примерно с 2000 г. стали использовать и в российской научной литературе, называя его «степенью абсорбции радикалов кислорода», или САРК. Есть много публикаций с таблицами величин САРК для разных продуктов, причем нередко с очень большими расхождениями. По прежним рекомендациям Тафтского университета оптимальная дневная доза ORAC составляет 3 500 единиц. Это соответствует 150 г черного изюма или черники. Но черная рябина содержит в пять раз больше антиоксидантов, чем черника, и сок из черной рябины продается в настоящее время как ценный продукт здоровья. Средние значения от 700 до 1 000 единиц на 100 г характерны для малины, шпината, слив, брокколи, свеклы, вишни, апельсинов, красного перца. В этих овощах и плодах главными антиоксидантами являются витамин С и пигмент антоциан. Яблоки, помидоры, капуста, баклажаны, зеленый лук и другие овощи и фрукты имеют от 200 до 500 единиц ORAC. Особенно высоки значения этого показателя у сушеных приправ: сельдерея, петрушки, укропа, куркумы, базилика, черного перца, семян горчицы, тмина, а также у какао-порошка. В некоторых книгах по диетам можно найти величины САРК и для различных блюд и напитков. Красное вино в этом ряду ничем сильно не выделяется. Флавоноиды разного типа (их больше тысячи), включая ресвератрол, присутствуют во многих ягодах и плодах. С вином флавоноиды потребляются в больших количествах лишь потому, что в южных странах люди выпивают его в день не меньше литра, что соответствует 2 кг винограда. Но большая часть флавоноидов остается в кожуре. В настоящее время некоторые биотехнологические компании выделяют из виноградного жмыха флавоноиды специально для продажи. По некоторым данным, в стандартной диете жителей США содержится лишь около 1 000 единиц САРК. Большинство природных антиоксидантов относится к пигментам растений. Растения тоже нуждаются в защите от реактивного кислорода, который образуется в хлоропластах. Некоторые растительные антиоксиданты (токоферол, каротин) растворимы лишь в жирах и защищают клеточные мембраны; другие (антоцианы, флавоноиды, полифенолы и аскорбиновая кислота) растворимы в воде. Потребление излишков антиоксидантов приводит к выделению их через почки, а не к продлению жизни. Рассчитывать на то, что можно про длить жизнь мегадозами антоцианов или флавоноидов так же наивно, как в случае с мегадозами витамина С.

Витамин Е – токоферол обеспечивает защиту клеточных мембран от кислородных радикалов

Витамин Е был открыт не при изучении патологий, связанных с диетой человека, а в опытах на животных, проводившихся в 1915 – 1925 гг. Использование диет, в которые включались очищенные белки, жиры, углеводы и известные к тому времени витамины, показывало, что хотя лабораторные животные и сохраняли свою жизнедеятельность, их размножение прекращалось. У них наблюдалось недоразвитие и женских и мужских гормональных половых циклов. Это позволило предположить, что существует особый фактор антистерильности, который был назван витамином Х. Лишь в 1936 г. этот «фактор антистерильности» удалось выделить из жира зародышей пшеницы. Его общая формула была достаточно сложной – С29Н50О2, и он получил название «альфатокоферол» (от греч. токос – рождение). Симптомы дефицита витамина Е у человека изучались в течение многих лет, и проявлялись они в самых разных патологиях. У новорожденных детей дефицит токоферола вел к анемии, связанной с легким повреждением оболочек эритроцитов, к слепоте, к атрофии мышц и ряду неврологических аномалий. Только к середине 1950-х годов установилось понимание того, что важность витамина Е заключается в его свойствах сильного антиоксиданта. Альфа-токоферол, как жирорастворимое вещество, пропитывает клеточные оболочки и защищает находящиеся в их составе полиненасыщенные жирные кислоты от повреждений свободными радикалами. Витамин С тоже антиоксидант, но его восстановительные способности важны для определенных реакций ферментов, образующих поперечные связи в коллагеновых волокнах. Витамин Е – более универсальный антиоксидант, он защищает клеточные мембраны разных тканей от свободных радикалов. Существует несколько форм токоферолов: альфа, бета, гамма, дельта. Наиболее эффективен альфа-токоферол. Источниками витамина Е в диете человека являются натуральные растительные масла, орехи, овощи, жиры молока, рыбий жир и в меньшей степени другие животные жиры. Жир из зародышей пшеницы наиболее богат токоферолом – 215 мг на 100 г. Поэтому хлеб из цельной муки – хороший источник токоферола. Как витамин токоферол рекомендуется в дозах 15 мг в день для взрослых мужчин. Женщинам и детям требуются меньшие дозы.

Приверженцы свободнорадикальной теории старения и использования различных антиоксидантов в экспериментах по продлению жизни неизбежно обратили внимание и на витамин Е. Применение увеличенных доз аскорбиновой кислоты, именно как антиоксиданта, для возможного продления жизни привело и к попыткам использования в тех же целях витамина Е. Мегадозы витамина С стали принимать под влиянием авторитета Лайнуса Полинга. Появление мегадоз витамина Е не с чьим именем не связано. Положительные результаты серии экспериментов по влиянию токоферола на продолжительность жизни нематод, ротифер, дрозофил и некоторых других простейших животных давали повод поверить, что такой же эффект можно получить и для человека. В середине 1970-х годов небольшие биотехнологические компании начали производить капсулы с синтетическим токоферолом, сначала по 100 мг, затем по 200, 400, 800, 1000 мг, а иногда и больше. Синтетический альфа-токоферол продавался и в виде порошка по 100 и 300 г в бутылочных упаковках. Поступили в широкую продажу и смеси витамина Е и С. По сообщению журнала «Newsweek» (31 мая 1993 г.), продажа мегадоз витамина Е только в США достигла в 1992 г. 392 млн долларов. Поскольку витамин Е растворим в жирах, его стали широко использовать в косметических продуктах, обещая омоложение кожи. В течение 20 лет население почти всех западных стран поглощало витамин Е в огромных количествах, хотя никаких клинических испытаний его целительных свойств не проводились. Первые клинические проверки действия мегадоз альфа-токоферола начались лишь в 1997 г., и к 2004 г. в различных институтах было проведено 19 таких испытаний, в которых приняли участие 135 967 человек. Доклад по их итогам, сделанный на заседании Американской ассоциации болезней сердца 10 ноября 2004 г., привлек внимание многих западных средств массовой информации [17]. Обобщенные результаты этих многолетних клинических испытаний показали, что увеличение ежедневных доз витамина Е до 200 мг не оказывало заметного положительного или отрицательного действия. Однако дальнейшее увеличение доз до 400 или 800 мг приводило к росту смертности от разных причин, иногда на 10%. Было подсчитано, что на каждый миллион человек, принимавших под влиянием рекламы мегадозы токоферола, ежегодно умирало 9 тыс. именно от передозировки этого витамина. В лондонской газете «Таймс» 11 ноября 2004 г. была опубликована большая статья «Витаминная стимуляция, которая может вызвать раннюю смерть» [18]. Научный отчет о проведенном метаанализе результатов испытаний и о росте смертности от всех болезней из-за приема высоких доз витамина Е был опубликован в 2005 г. [19]. Организм человека приспособился в процессе эволюции к переработке лишь определенных количеств токоферола. В печени имеются особые клетки, резервирующие токоферол для регулирования его концентрации в крови на определенном уровне. Как жирорастворимое вещество токоферол переносится к оболочкам клеток теми же липопротеиновыми хиломикронами, которые транспортируют по кровотоку холестерин и триглицериды. Ежедневное потребление чрезмерных доз витамина Е приводит к постоянному переполнению резервных клеток и к их разрушению. Это было доказано электронной микроскопией на экспериментальных животных. Теории о том, что витамин Е может уменьшать риск рака предстательной железы, не подтвердились в клинических испытаниях, проведенных в 2004 – 2008 гг. Британская служба здравоохранения выпустила листовки, в которых беременным женщинам рекомендовалось воздерживаться от капсул и таблеток с мегадозами витамина Е. Однако в 2008 – 2009 гг. капсулы с мегадозами токоферола в 400, 800, 1 000 и даже 2 000 мг все еще продавались в Англии в магазинах здоровья и в аптеках. Предприятия по производству токоферола продолжают работать и получать большие прибыли. Широкая реклама мегадоз витамина Е переместилась в Россию, Украину и в другие страны СНГ.

Можно ли увеличить активность ферментативных антиоксидантов?

Ферментативные системы по быстрой нейтрализации свободных кислородных радикалов (супероксиддисмутаза, каталаза, пероксидаза, глютатионпероксидаза и др.), которые являются универсальной и главной обороной тканей от любых перекисных соединений, обычно содержат в составе своих активных групп ионы металлов: железа, меди, марганца, цинка или селена. Антиоксиданты в составе пищи проявляют свое действие в более специализированных функциях. Однако ферментативные антиоксиданты нельзя использовать в капсулах или таблетках для орального применения. Усилить их действие можно лишь стимуляцией синтеза в клетках. Возможность трансгенных манипуляций, появившаяся сравнительно недавно, привела к экспериментальным попыткам внедрения в геномы экспериментальных животных дополнительного числа генов, которые регулируют синтез ферментов-антиоксидантов. В этом случае, как ожидается, можно уменьшить уровень повреждений клеточных структур свободными радикалами. Подобные опыты пока возможны лишь на простейших животных. У мушек дрозофил, в геном которых было внедрено по три дополнительные копии генов антиокислительных ферментов, процессы защиты от образования перекисей усиливались. Такие популяции трансгенных мух отличались большей активностью, и продолжительность их жизни возрастала на 20 – 30% [20]. Однако экспериментальное создание трансгенных мышей с резко (в 2 – 5 раз) увеличенным уровнем супероксиддисмутазы не привело к продлению жизни животных. Некоторые мыши с повышенным синтезом этого фермента умирали раньше контрольных [21]. Это свидетельствует о том, что продолжительность жизни мышей зависит от очень многих факторов. Увеличение концентрации одного фермента лишь нарушает установившееся в эволюции равновесие физиологических процессов. Та же группа ученых, продолжая в течение нескольких лет изучать различные процессы у мышей, обладающих вдвое более интенсивной нейтрализацией свободных радикалов именно в митохондриях, показала, что в этом случае и у молодых, и у старых животных снижается уровень окислительного повреждения липидных структур и уменьшается общий «окислительный стресс». Однако это не влияло на продолжительность жизни и спектр возрастных патологий. Существует видовая специфичность продолжительности жизни, которая сформировалась в процессе эволюции и отбора. Свободные радикалы, несомненно, являются лишь одним из множества факторов, с помощью которых осуществлялся контроль столь кардинального процесса, как старение индивидуальных особей разных видов животных.

Геронтологические советы по антиоксидантам

Основной геронтологический совет по антиоксидантам состоит в том, что ожидать от пищевых антиоксидантов исцеления от старости не следует. Овощи, фрукты и некоторые растительные масла, богатые антиоксидантами, являются частью полноценной диеты, которая, безусловно, способствует сохранению здоровья и в молодом, и в старом возрасте. Но они не являются геропротекторами, способными увеличить максимальную для человека продолжительность жизни. Травоядные млекопитающие животные потребляют ежедневно в сотни раз больше растительных антиоксидантов (флавоноидов, катехинов, витаминов, полифенолов, антоцианов и др.), чем хищники, но между ними нет заметной разницы в средней продолжительности жизни. Полевые грызуны имеют в своей растительно-зерновой диете значительно больше антиоксидантов, чем летучие мыши, но живут два-три года. Летучие мыши, питающиеся в основном насекомыми, могут жить 30 – 40 лет, имея более интенсивный метаболизм. Эти различия определялись отбором. Полевым грызунам нужно сохранять потомство быстрым размножением. У них слишком много врагов. Летучим мышам хищники не страшны. Безопасную нишу нашли для себя в Антарктике пингвины, которые живут намного дольше перелетных птиц, хотя потребляют значительно меньше антиоксидантов. Продолжительность жизни людей также установилась в процессе эволюции не колебаниями в уровне свободных радикалов, а варьированием множества систем восстановления повреждений, прежде всего генетических систем. Именно поэтому зародышевые клетки, которые делятся из поколения в поколение в течение миллионов лет, обеспечены множеством разных систем восстановления структуры ДНК. Антиокислительные способности этих клеток создаются ферментами, а не флавоноидами или витаминами. Антиокислительные ферменты, как я уже говорил, содержат ионы металлов в своей активной группе. Быстрый переход этих ионов из восстановленного состояния в окисленное является главным механизмом защиты от свободных радикалов. Ионы меди переносятся к клеткам и тканям с помощью синтезируемого в печени белка серулоплазмина (ceruloplasmin), который, таким образом, является очень важным компонентом защиты от свободных радикалов. Каждая молекула серулоплазмина содержит 6 атомов меди, и этот белок переносит через плазму крови 90% ионов меди. Концентрация серулоплазмина в крови снижается при старении, и одновременно с этим снижается в тканях активность антиокислительных ферментов [22]. Мегадозы витамина С тоже снижают концентрацию в крови серулоплазмина.

Свободные радикалы кислорода в небольших количествах могут появляться как ошибки окислительных процессов. Однако кислородные радикалы также активно генерируются в митохондриях для выполнения важных функций. В составе иммунокомпетентных клеток есть, например, особые Т-лимфоциты, или «клетки-убийцы» (cytotoxic, or killer cells), которые способны узнавать «чужие» или патологически изменившиеся клетки в тканях и убивать их. Например, если в какую-либо клетку тела проник вирус, то «клетка-убийца» прикрепляется к ней и разрушает ее вместе с вирусом, защищая организм от инфекции. Для уничтожения инфицированной клетки используются кислородные радикалы и протеолитические ферменты. Избыток антиоксидантов в этом случае может лишь затруднить и замедлить удаление инфицированных клеток. Это относится и к процессам защиты тканей от раковых клеток. В генетическом аппарате человека особенно много генов, предохраняющих клетки от перерождения их в раковые. Особое значение имеет в этом процессе ген р53, называемый «убийцей рака» (the cancer killer). Он останавливает развитие опухолей, обеспечивая самоубийство клеток, которые начинают терять свою специализацию [23]. Самоубийство клеток, или апоптозис (apoptosis), распространено в любых тканях, включая нервные. Морфогенез и самообновление тканей невозможны без процессов апоптозиса. Эти процессы происходят не только при развитии, но и при старении (инволюция тимуса, атрофические процессы, происходящие при менопаузе у женщин и др.). Генерация свободных радикалов кислорода является частью апоптозиса. Вмешательство в эти очень сложные, но вполне нормальные процессы с помощью массивных доз антиоксидантов, особенно синтетических, может оказаться скорее вредным, чем полезным.

Физическая активность, как известно, стимулирует все окислительные процессы и соответственно генерацию свободных радикалов в тканях. Для животных и растений, не имеющих систем для поддержания постоянной температуры, окислительные процессы усиливаются при ее повышении. Защита от окислительных повреждений во всех таких случаях обеспечивается продукцией разнообразных белков, которые в недавнем прошлом называли «белками от теплового шока» (heat shock proteins), а в последнее время – «белками от стресса» (stress proteins). Эти белки тоже защищают клеточные структуры от свободных радикалов кислорода. В пожилом возрасте интенсивный окислительный обмен, непосредственно связанный с физической активностью людей, не сокращает продолжительность жизни, как это могло бы следовать из постулатов свободнорадикальной теории старения, а, наоборот, способствует ее продлению. Происходит это благодаря тому, что повышенная физическая активность людей пожилого возраста приводит к усиленному образованию «белков от стресса», что защищает клетки от повреждений свободными радикалами [24].

Антиоксиданты, которые присутствуют в пищевых продуктах, поступают в организм равномерно, по мере переваривания пищи. Если принимать повышенные дозы тех же флавоноидов в форме таблеток или капсул, то концентрация их в крови может расти быстрее и достигать больших величин. Этот рост не будет сопровождаться более интенсивным поступлением антиоксидантов в клетки разных тканей. Избыток водорастворимых антиоксидантов просто удаляется через почки, а жирорастворимых – через образование желчи. Мы легко можем наблюдать это по выделению с мочой, например, пигментов-антиоксидантов, содержащихся в свекле. Избыточный токоферол (как и избыточный холестерин) не всасывается полностью в кишечнике и удаляется с остатками непереварившейся пищи.

Наличие в красном вине флавоноидов-антиоксидантов никоим образом не отменяет рекомендации пить его в очень умеренном количестве. В той же статье «Французский парадокс», с которой я начинал обсуждение проблемы, в частности, говорится: «Даже если красное вино действительно защищает от сердечнососудистых заболеваний, что убедительно пока не доказано, мы воздерживаемся от рекомендаций применять вино для этой цели. Следует помнить, что у французов очень высока частота цирроза печени, рака печени и некоторых других форм рака» [1]. Следует также помнить, что алкоголь, попадая в кровь, быстро окисляется в тканях, стимулируя выделение энергии. Этим объясняется его согревающее действие. Однако широкая пропаганда красного вина как основной причины существования «французского парадокса» и экспериментальные исследования, которые пытались связать этот парадокс с конкретным компонентом – ресвератролом, неизбежно привели к желанию фармацевтических компаний заработать на этом, наладив производство синтетического ресвератрола и его возможных аналогов как специфических препаратов против старения. Группа крупных фармацевтических фирм США создала специализированный филиал «Sirtris», который в настоящее время уже рекламирует серию препаратов для борьбы с болезнями старения. Журнал «Fortune» недавно предсказывал: «Человечество в течение тысячелетий мечтало о лекарствах, которые могли бы продлить жизнь. “Сиртрис”, возможно, не справится еще с реализацией этой мечты. Но само существование такой компании показывает, что продление жизни превратилось теперь в обычную задачу фармацевтической индустрии. Мечта людей будет осуществлена в течение нескольких десятилетий» [25]. Ресвератрол в настоящее время широко продается в разных странах в магазинах здоровья и через Интернет.

Популярные книги

На изломе чувств

Юнина Наталья
Любовные романы:
современные любовные романы
6.83
рейтинг книги
На изломе чувств

Идущий в тени 6

Амврелий Марк
6. Идущий в тени
Фантастика:
фэнтези
рпг
5.57
рейтинг книги
Идущий в тени 6

Совок

Агарев Вадим
1. Совок
Фантастика:
фэнтези
детективная фантастика
попаданцы
8.13
рейтинг книги
Совок

Везунчик. Дилогия

Бубела Олег Николаевич
Везунчик
Фантастика:
фэнтези
попаданцы
8.63
рейтинг книги
Везунчик. Дилогия

Кодекс Охотника. Книга IX

Винокуров Юрий
9. Кодекс Охотника
Фантастика:
боевая фантастика
городское фэнтези
попаданцы
5.00
рейтинг книги
Кодекс Охотника. Книга IX

Сильнейший ученик. Том 2

Ткачев Андрей Юрьевич
2. Пробуждение крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сильнейший ученик. Том 2

«Три звезды» миллиардера. Отель для новобрачных

Тоцка Тала
2. Три звезды
Любовные романы:
современные любовные романы
7.50
рейтинг книги
«Три звезды» миллиардера. Отель для новобрачных

Последняя Арена 3

Греков Сергей
3. Последняя Арена
Фантастика:
постапокалипсис
рпг
5.20
рейтинг книги
Последняя Арена 3

Назад в СССР: 1985 Книга 4

Гаусс Максим
4. Спасти ЧАЭС
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Назад в СССР: 1985 Книга 4

И только смерть разлучит нас

Зика Натаэль
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
И только смерть разлучит нас

Всплеск в тишине

Распопов Дмитрий Викторович
5. Венецианский купец
Фантастика:
попаданцы
альтернативная история
5.33
рейтинг книги
Всплеск в тишине

Прометей: каменный век II

Рави Ивар
2. Прометей
Фантастика:
альтернативная история
7.40
рейтинг книги
Прометей: каменный век II

Большая Гонка

Кораблев Родион
16. Другая сторона
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Большая Гонка

Покоритель Звездных врат

Карелин Сергей Витальевич
1. Повелитель звездных врат
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Покоритель Звездных врат