Чтение онлайн

на главную - закладки

Жанры

Почему экономическая наука должна стать прикладной интерпретацией достаточно общей теории управления

СССР Внутренний Предиктор

Шрифт:

Наконец, рассмотрим некую игру двух или более игроков с ненулевой суммой, в которой сумма выигрышей соответствующая одному набору выбранных альтернатив больше суммы, соответствующей другому набору. В этом случае один из игроков, возможно, захочет «подкупить» другого, чтобы тот выбрал такую альтернативу, которая даёт первую сумму выигрышей. Взятку, конечно, можно выплатить лишь из возможного выигрыша, поэтому выигрыш должен иметь вид, допускающий передачу от одного игрока к другому (наподобие «денег», но не «власти»). Таким образом, можно различать игры с побочными платежами и без них в зависимости от того, можно ли свободно передавать выигрыши от одного игрока к другому.

Игры двух лиц с нулевой суммой

Игры с прямым конфликтом между двумя игроками с точки зрения теории неинтересны, поскольку для всех таких задач всегда существует строго определенное решение. Тем не менее эти игры

способствовали развитию двух направлений экономической теории, а именно теории измеримой полезности и теории некооперативного равновесия.

(…)

Кооперативные игры n лиц

Когда число игроков больше двух, игры становятся гораздо содержательнее, поскольку в этом случае могут создаваться коалиции с целью извлечь выгоды из сотрудничества. Основной инструмент исследования подобных ситуаций — характеристическая функция, которая каждой коалиции ставит в соответствие выигрыш, причем выигрыш любой коалиции больше суммы выигрышей отдельных участников коалиции. Сама игра полностью определена, как только задана её характеристическая функция. Главный интерес представляет понятие равновесного исхода или такого исхода, который нельзя улучшить созданием новых и роспуском существующих коалиций. Более точно, пусть при определенной структуре коалиций осуществляется некий делёж выигрышей между игроками. Другой делёж называется доминирующим, по отношению к данному, если существует коалиция, которая собственными силами может улучшить судьбу своих участников. Ядро представляет собой множество недоминируемых дележей: таким образом, ядро — это состояние равновесия. Разумеется, можно предложить и другие понятия равновесия.

(…)

Практически лишь в последнее десятилетие теория игр n лиц начала играть заметную роль в экономической теории, что объясняется прежде всего слабым развитием теории до тех пор, пока не было разработано определение понятия ядра решения подобного ряда игр. Ядро — понятие экономически содержательное, поскольку представляет собой исход игры, который нельзя улучшить никакой коалицией участников экономического процесса. Ядро представляет собой обобщение понятия Парето — эффективного дележа, поскольку удовлетворяет условию, что не только коалиция всех участников экономического процесса не может улучшить свое положение, но и никакая меньшая коалиция не может увеличить свою долю, предпринимая разрешенные действия.

Таким образом, ядро связано с понятием свободы заключения контрактов или конкуренции, и многие экономические исследования проблем рынка можно изложить в понятиях рыночной игры. Для подобных игр нередко можно показать, что ядро определенным образом связано с конкурентным равновесием при условии, что существует и то, и другое.

Однако возможно, что гораздо больший интерес для экономистов представляют те экономические проблемы, которые можно представить в виде кооперативных игр n лиц, где ядра не существует. Построение ядра можно представить себе следующим образом: сначала просматриваем все дележи, затем отбрасываем те, над которыми доминирует коалиция всех участников экономического процесса (Парето — неэффективные дележи), затем отбрасываем дележи, над которыми доминируют коалиции (n — 1) участников, и т.д. В конце концов у нас остается ядро дележей. Если отбрасывается слишком много дележей, то ядра может и не быть. Следовательно, мы получаем «сильное» понятие равновесия, которое важно для экономических задач, не имеющих решения в виде ядра, поскольку такие случаи означают, что свобода рынка не в состоянии примирить противоречивые устремления участников рынка [26].

(…)

Хотя этот факт и нечасто признают экономисты, занимающиеся прикладными исследованиями, в процессе развития теории игр за последние десять лет [27] вся теория общего равновесия была создана заново. Новый подход к теории общего равновесия начался с введения большого числа продавцов, каждый из которых обладает предпочтениями и располагает некоторым количеством наличных ресурсов, и с рассмотрения фирм, которые также участвуют в выборе. Предполагается, что экономическая система обеспечивает свободу заключения контрактов или свободу образования коалиций, которые улучшают благосостояние участников экономического процесса; таким образом, разумное хозяйствование (или оптимизация) оказывается частью вопроса об образовании коалиций с целью эффективного перераспределения ресурсов. Хорошо известно, что в подобных экономических системах конкурентное равновесие входит в ядро. Другими словами, распределение благ между продавцами, которое для некоторой системы цен является оптимальным при заданных ограничениях, входит в ядро дележей. Более того, все дележи, которые обеспечивают такие же выигрыши тем же самым

продавцам, тоже входят в ядро.

Более важно, что по мере того, как рынок становится более «конкурентным» в том смысле, что влияние отдельного субъекта на состояние рынка уменьшается, ядро сужается, однако «конкурентный» делёж продолжает оставаться в ядре. В пределе, когда число продавцов стремится к бесконечности, ядро сходится к конкурентному дележу. В подобных построениях ведущую роль играет понятие конкуренции: так, существование общего равновесия вытекает из строгого определения конкуренции. Напротив конкуренция является естественным понятием, его не надо обосновывать никакими доводами ad hoc. Можно исследовать условия конкуренции как предпосылку, используя результат, который дают подобные модели, — размеры ядра.

Другие понятия решения в играх n лиц

Понятие ядра связано с понятием сотрудничества. Поскольку в кооперативных играх поведение коалиций связано с сотрудничеством игроков для достижения обоюдной выгоды, то мы вынуждены вновь обратиться к обобщениям понятия разумного поведения отдельного индивидуума. Понятие равновесия, по Нэшу, отражает суть данной проблемы: отдельный участник экономического процесса заранее оценивает свои лучшие возможные действия при заданных (возможно, наносящих ему ущерб) действиях других участников. Данная постановка позволяет рассмотреть многие явления, например неполной информации, «“ошибочных” ожиданий» и т.д.

Более того, именно в кооперативных играх выигрыши отдельных участников экономического процесса a priori не рассматриваются, совсем наоборот: сужается поведение коалиции, которое приводит к коалиционным выигрышам, а распределение выигрышей внутри коалиции оставляется без внимания. Чтобы исследовать подобного рода вопросы, с помощью характеристической функции было построено семейство решений, каждое из которых в отдельности называется «ценой» игры для определённого участника.

Шепли определил цену игры n лиц, грубо говоря, как среднюю по всем коалициям, в которых участвует данный игрок, предельную долю игрока в выигрыше коалиции. И хотя политологи широко используют это понятие при изучении голосования на выборах и процессов принятия групповых решений, экономисты лишь совсем недавно стали применять его в исследовании проблем теории частичного равновесия (например, дуополии) и теории общего равновесия».

Этим статья Э.Роя Вайнтрауба и завершается, хотя такое её окончание производит впечатление, что в ней что-то так и осталось недосказанным. Чтобы развеять это впечатление недосказанности, обратимся к статье “Математическая теория игр”, опубликованной в интернете [28] на сайте Александра и Алексея Наймушиных.

«Математические науки выделили собственную дисциплину, которая исключительно исследует игровые явления как явления, поддающиеся обработке математическим аппаратом. Истоки теоретико-игровых рассуждений восходят с работам Баше де Мезирака (середина 17 века). Сама же идея создания математической теории конфликта — теории игр — формируется с начала 20 века, о чём свидетельствуют труды К.Бутона, Э.Ласкера, Е.Мура, Э.Цермело, Э.Бореля, Г.Штейнгауза. С этого момента начинаются появляться работы по теории игр, которые начинают применяться в математике, экономике, биологии, кибернетике. (…)

Теория игр представляет собой раздел математики, занимающийся исследованием вопросов поведения и разработкой оптимальных правил (стратегий) поведения каждого из участников в конфликтной ситуации.

Игра представляется как модель любого конфликта, то есть такой ситуации, в которой задействованы [29] несколько участников с различными интересами, мотивами, установками. Для теории игр безразлично, кто или что скрывается за игроками: одушевлённые или неодушевленные объекты, природа, элементы социального или биологического бытия. Для неё основное то, что имеется конфликт и игроки или даже один игрок, которым она предлагает математически точно рассчитанные действия в условиях разной степени неопределённости. Человека же втягивает в игру стремление улучшить свое состояние и позицию в игре и через игру. Неопределённость как магнит притягивает к себе не только игрока, но и наблюдателя, зрителя. «Силой, движущей игроков, является надежда на выигрыш. Привлекательность игр состоит в значительной степени в неопределённости результата. Эта неопределённость побуждает людей вступать в конфликтные ситуации, участвовать в игре не только в качестве игроков, но и в качестве болельщиков». По Ж.Паскалеву получается, что сами люди сначала вступают в конфликт, чтобы в условиях неопределенности выиграть, то есть признак выигрыша обязательно присутствует в игре и он является вторичным, производным от самого конфликта. Конфликт должен закончится определенным результатом: чьим-то выигрышем, или проигрышем, или же ничейным результатом.

Поделиться:
Популярные книги

Не грози Дубровскому!

Панарин Антон
1. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому!

Я – Стрела. Трилогия

Суббота Светлана
Я - Стрела
Любовные романы:
любовно-фантастические романы
эро литература
6.82
рейтинг книги
Я – Стрела. Трилогия

Кодекс Охотника. Книга ХХ

Винокуров Юрий
20. Кодекс Охотника
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга ХХ

Путь Шедара

Кораблев Родион
4. Другая сторона
Фантастика:
боевая фантастика
6.83
рейтинг книги
Путь Шедара

Романов. Том 1 и Том 2

Кощеев Владимир
1. Романов
Фантастика:
фэнтези
попаданцы
альтернативная история
5.25
рейтинг книги
Романов. Том 1 и Том 2

Найди меня Шерхан

Тоцка Тала
3. Ямпольские-Демидовы
Любовные романы:
современные любовные романы
короткие любовные романы
7.70
рейтинг книги
Найди меня Шерхан

Вечный. Книга I

Рокотов Алексей
1. Вечный
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга I

Дракон - не подарок

Суббота Светлана
2. Королевская академия Драко
Фантастика:
фэнтези
6.74
рейтинг книги
Дракон - не подарок

Барон не играет по правилам

Ренгач Евгений
1. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон не играет по правилам

Я – Орк. Том 2

Лисицин Евгений
2. Я — Орк
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я – Орк. Том 2

Мимик нового Мира 10

Северный Лис
9. Мимик!
Фантастика:
юмористическое фэнтези
альтернативная история
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 10

Газлайтер. Том 10

Володин Григорий
10. История Телепата
Фантастика:
боевая фантастика
5.00
рейтинг книги
Газлайтер. Том 10

Кровь и Пламя

Михайлов Дем Алексеевич
7. Изгой
Фантастика:
фэнтези
8.95
рейтинг книги
Кровь и Пламя

Законы Рода. Том 5

Flow Ascold
5. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 5