Почему мы не проваливаемся сквозь пол
Шрифт:
Прочность этих образцов оказалась равной приблизительно 320 кГ/мм2, то есть была почти в 20 раз выше, чем прочность образцов, в которых трещинам не нужно было пересекать слабые плоскости. Это составляет 1,5% от модуля Юнга - цифра весьма внушительная. Но вот другой сорт слюды - Маргарит - имеет вдвое больше электронов связи через плоскость спайности, а потому хрупок и обладает ничтожной прочностью.
Подобные эксперименты показывают, что для материалов такого типа трудно отделить реальную прочность от хрупкости, поэтому введение слабых внутренних поверхностей можно рассматривать как увеличение общей прочности тела.
Слюда и асбест не использовались людьми каменного века для изготовления инструментов и оружия - плоскости спайности тянутся в них через весь кусок минерала, от одной
Поскольку нефрит нельзя расколоть так же легко, как кремень или обсидиан, ему придавали нужную форму путем очень длительной - недели и месяцы - шлифовки с песком на куске дерева. Поэтому очень прочный нефрит оставался материалом для дорогих поделок. Из-за дороговизны, великолепия и редкости материала самого по себе эти предметы сохранились в качестве символов престижа, когда на сцену выступили металлы.
Нефрит встречается редко, потому что он может кристаллизоваться лишь при определенных геологических условиях (температуре и давлении). Эти благоприятные условия иногда встречались в складках земной коры. Такие области есть на Дальнем Востоке, в Новой Зеландии, в Центральной Америке. Новозеландское племя маори делало нефритовые топоры почти на памяти живущего поколения. Генрих Гарер[32] рассказывает, что в центральной Новой Гвинее топоры до сих пор делаются из камня, похожего на нефрит; шлифовка и полировка их требует нескольких месяцев. Любопытная проблема возникла в связи с тем, что недавно в Англии было найдено несколько нефритовых топоров. Если это не шутка типа Пилтдауновской[33], то либо где-то в Европе были раньше месторождения нефрита, либо топоры должны были проделать невообразимый путь с Дальнего Востока. Однако, как заметил Геродот по поводу находки скифских поделок в Делосе, они могли “рассеяться”.
Примеры эффективного торможения трещин в минералах случайны. Когда же имеешь дело с биологическими материалами, поражаешься огромной заботе, которую природа проявляла о разного рода поверхностях раздела. Конструкция зубов - прекрасное тому подтверждение. Зубы состоят из твердого вязкого поверхностного слоя, называемого эмалью, и сердцевины из дентина. И эмаль, и дентин содержат неорганические кристаллы удлиненной формы, распределенные в органической матрице. Главное отличие между ними состоит в процентном содержании органического и неорганического компонентов.
Твердый компонент эмали и дентина - вытянутые кристаллы вещества, которое номинально представляет собой гидроксилапатит Ca10(PO4)6(OH)2. Фактически же химический состав этих кристаллов изменяется в широких пределах, отражая условия, в которых они формировались. Обычно здесь присутствуют углеапатит, фтороапатит, фтористый кальцин, карбонат кальция и т.д. Кристаллы эти небольшие, их размер в эмали около 3000- 5000 А в длину и 500-1200 А в толщину. В эмали они очень плотно упакованы, их содержание здесь составляет 99% всего объема материала. Между отдельными кристалликами находится тонкий слой очень сложного органического соединения, состоящего главным образом из протеина. Раньше считали, что это соединение подобно кератину, одному из типов протеина, содержащемуся в волосах, однако сейчас полагают, что в зубной эмали содержится свой специальный сорт протеина. Между прочим, он заметно изменяет свой состав при переходе владельца из младенческого возраста к зрелому.
Дентин отличается от эмали прежде всего тем, что неорганическая составляющая занимает лишь около 70% его объема. Кроме того, кристаллы апатита намного меньше и имеют 200-300 А в длину и 40-70 А в ширину. Средой, в которую эти кристаллы заделываются, является органическая матрица, состоящая в основном из коллагена.
Сцепление между гидроксилапатитом и слоями протеина имеет чрезвычайно сложную химическую природу. Частично оно обеспечивается гидроксильными связями, а частично -
Очень часто в живых организмах для управления величиной сцепления на границах используется водородная связь в гидроксильной группе (-ОН). Такой способ, безусловно, удобен в случаях постоянной влажности окружающей среды. Поэтому, когда человек использует природные органические материалы в сухих условиях, возникают определенные трудности. Высушивание гидроксилов, то есть удаление водной оболочки, окружающей каждую гидроксильную группу, ведет к усадке материалов, таких, как древесины. Это может привести и к резкому охрупчиванию, так как прочность границ становится слишком большой. То же самое может случиться и со слоновой костью, строение которой очень напоминает структуру зубов. В афинском Парфеноне была знаменитая статуя богини Афины из золота и слоновой кости. В те времена под крышей Парфенона было, должно быть, очень жарко и, чтобы предохранить слоновую кость от охрупчивания и растрескивания, статуя была окружена неглубоким бассейном с водой, которая не только бросала снизу отраженный свет на Афину, но и поддерживала достаточную влажность воздуха. Бассейн всегда был наполнен водой и сохранял статую в течение почти восьми столетий. На полу Парфенона и сейчас можно видеть остатки кольцевой каемки бассейна, глубина которого была всего около пяти сантиметров.
(обратно) (обратно)
Глава 5
Древесина и целлюлоза, или о деревянных кораблях и железных людях
Во время войны, когда мы работали над прочными пластиками, профессор Чарльз Гурни взял за правило декламировать мне чуть ли не каждый день стишок, смысл которого сводился к тому, что сделать пластик - не фокус, а вот создать материал, подобный дереву, под силу лишь всевышнему. Меня это несколько угнетало, потому что древесина действительно лучше подходила для самолетов, чем те пластики, которые мы в то время умели делать. Даже и по сей день имеются конструкции (например, гидропланы, определенного типа суда), для которых древесина остается наиболее подходящим материалом.
Древесина и другие формы целлюлозы с успехом применяются в технике. Но этого мало, целлюлоза в природе вообще имеет чрезвычайно широкое применение. Целлюлоза является конструкционным элементом всех растений. Именно прочность и жесткость целлюлозы держат зеленую листву растения “лицом к солнцу”, без чего невозможен процесс фотосинтеза - отправной химической точки для всех форм жизни. На долю целлюлозы приходится в среднем около трети веса всей растительности на Земле - практически эта цифра вне пределов точного учета. В целлюлозе заперта большая часть имеющегося на Земле углерода. В телах животных целлюлоза встречается редко, хотя и обитает в океане небольшой класс животных - оболочники, в основном состоящие из целлюлозы, внешне они напоминают продолговатых медуз и, по-видимому, не имеют определенной устойчивой формы. А вот в насекомых содержится полимерное вещество хитин, которое очень похоже на целлюлозу.
Обратившись теперь к материалам, которые использует человек, мы увидим, что целлюлозе здесь принадлежит ведущая роль. Годовое потребление древесины в мире (не считая топлива) - где-то между 800 и 1000 млн. тонн (древесина - достаточно важный материал в технике, чтобы попасть в официальные статистические сборники). Необработанная древесина, идущая на заборы, а также бамбук для строений, солома и камыш для крыш и т.д. используются сельским населением примерно в таком же количестве, но каких-либо статистических данных по таким “неиндустриальным” материалам, конечно же, нет. Мировое производство чугуна и стали составляет около 400 млн. тонн, цифры для любого металла по сравнению с этой пренебрежимо малы[35].