Чтение онлайн

на главную

Жанры

Почему небо темное. Как устроена Вселенная
Шрифт:

Рис. 18. Слева — Биллем де Ситтер (1872–1934) у телескопа, справа — Жорж Леметр (1894–1966) и Альберт Эйнштейн (1879–1955)

Таким образом, в 1917 году были созданы две модели Вселенной. Обе модели были однородными и изотропными, статическими и обе содержали -член. Модель Эйнштейна была заполнена веществом, но излучение от далеких объектов не было смещено в красную область спектра. Модель де Ситтера была пустой, но излучение (предположим, что оно там откуда-то взялось) должно было демонстрировать красное смещение. Однако реальная Вселенная содержит и вещество, и красное смещение в спектрах объектов!

1918 год: Немецкий астроном Карл Вирц повторяет анализ Джорджа Паддока и приходит к заключению, что «система спиральных туманностей по отношению к нынешнему положению Солнечной системы, как центра, движется прочь со скоростью примерно 656 км/с».

Иногда можно встретить утверждения, что Вирц не знал о работе Паддока, однако это не так, поскольку список туманностей с измеренными скоростями взят Вирцом именно из работы Паддока (в статье Вирца есть прямая ссылка на соответствующую страницу в статье Паддока). В дальнейшем, как это иногда бывает в науке, о вкладе Паддока забыли и введение «K– члена» стали считать заслугой Вирца.

1919 год: 29 мая состоялось солнечное затмение, во время которого две группы английских исследователей, работавших в Бразилии и на острове Принсипи рядом с западным побережьем Африки, измерили угловое отклонение лучей света звезд Солнцем. Величина отклонения в пределах ошибок оказалась близка к предсказанию ОТО. С этого времени ОТО становится общепризнанной теорией гравитации и основой для построения моделей Вселенной.

Выходит статья Харлоу и Марты Шепли, в которой изучаются характеристики шаровых звездных скоплений и спиральных туманностей. Один из выводов статьи — спиральные туманности в целом двигаются от Солнца и от плоскости Галактики. И даже более — скорость туманностей зависит от их видимой звездной величины, что может свидетельствовать о существовании зависимости скорости туманности от расстояния.

1922 год: Карл Вирц анализирует по возросшим данным Слайфера лучевые скорости 29 спиральных туманностей. По-видимому, именно в этой его работе впервые появляется термин «красное смещение» («Rotverschiebung» по-немецки), ставший впоследствии общепринятым [12] .

Вирц подтверждает свои предыдущие результаты, а также результаты Паддока и супругов Шепли, о разлете системы туманностей.

1922, 1924 годы: Александр Александрович Фридман публикует две статьи, в которых он показывает, что уравнения ОТО допускают решения, отвечающие однородному пространству, в котором все расстояния изменяются со временем. Фридман решил уравнения в общем виде, то есть с > 0 и -членом, однако вывод о существовании таких решений справедлив и для = 0. Как написал Эйнштейн в 1923 году в заметке, посвященной результатам Фридмана, «оказывается, что уравнения поля допускают, наряду со статическими, также и динамические (т. е. переменные относительно времени) центрально-симметричные решения для структуры пространства». (Появление заметки связано с тем, что сначала Эйнштейн публично не согласился с этими результатами, а затем, убедившись в своей ошибке, так же публично признал их справедливость. Очень редкий случай в истории науки!) Упоминавшиеся ранее модели Эйнштейна и де Ситтера оказались лишь частными случаями решений Фридмана.

12

Красное смещение, обычно обозначаемое буквой z, — это относительное смещение линий в спектре небесного объекта: z = ( — 0)/0, где — наблюдаемая длина волны линии в спектре космического объекта, а 0 — длина волны той же линии в спектре неподвижного лабораторного источника. При интерпретации z как следствия движения источника, то есть результата эффекта Доплера, скорость движения объекта находится просто как = сxz (при  << с ), где с — скорость света.

Смысл найденного Фридманом решения состоял в том, что наша Вселенная просто не может быть статической — она должна либо расширяться, либо сжиматься. (Как показали позднейшие исследования, статическая Вселенная Эйнштейна, в которой гравитация точно уравновешивается создаваемым -членом «антитяготением», неустойчива — малейшее отклонение от этого равновесия приведет к тому, что Вселенная начнет сжиматься под действием гравитации или расширяться под влиянием -члена.) В каком конкретно состоянии находится Вселенная, должны были показать наблюдения: «Данные, которыми мы располагаем, совершенно недостаточны для каких-либо численных подсчетов и для решения вопроса о том, каким миром является наша Вселенная…». По воспоминаниям Д. Д. Иваненко, в 1924 году Фридман обсуждал измеренные Слайфером большие лучевые скорости спиральных туманностей на семинаре в Петроградском университете. Он полагал, что эти наблюдения могут быть прямым наблюдательным свидетельством в пользу теории расширяющейся Вселенной, однако исследовать этот вопрос он просто не успел.

. . Фридман не был астрономом или космологом. Чаще всего его называют математиком, геофизиком или метеорологом, поскольку он получил важные результаты во всех этих науках. В 1910 году он закончил математическое отделение физико-математического факультета Санкт-Петербургского университета и был оставлен в университете «для подготовления к профессорскому званию». Во время Первой мировой он, как и Хаббл, добровольцем поступил в армию, служил в авиационных частях, заведовал Центральной аэронавигационной и аэрологической службой фронта в Киеве. После войны Фридман сначала оказался в Москве, а в 1918 году стал профессором кафедры механики Пермского университета. В 1920 году он, наконец, возвращается в Петроград, начинает преподавать в ряде учебных заведений, включая университет и Политехнический институт. В 1925 году он стал директором Главной геофизической обсерватории. Летом 1925 года А. А. Фридман и П. Ф. Федосеенко с научными целями поднялись на аэростате на высоту 7400 м, поставив тем самым рекорд России.

Даже этот очень неполный и краткий набросок основных этапов жизни и деятельности А. А. Фридмана наглядно иллюстрирует его удивительную разносторонность и активность. Как ученый и как организатор науки А. А. Фридман мог бы сделать еще очень многое, однако 16 сентября 1925 он безвременно (ему было всего 37 лет!) скончался от брюшного тифа.

Почти вся жизнь А. А. Фридмана уместилась в записанных сплошным текстом строчках стихотворения Леонида Мартынова:

«Фридман? До сих пор он житель лишь немногих книжных полок — математики любитель, молодой метеоролог и военный авиатор на германском фронте где-то, а поздней организатор Пермского университета на заре советской власти… Член Осоавиахима. Тиф схватив в Крыму, к несчастью, не вернулся он из Крыма. Умер, и о нем забыли. Только через четверть века вспомнили про человека, вроде как бы оценили! Молод, дерзновенья полон, мыслил он не безыдейно. Факт, что кое в чем пошел он дальше самого Эйнштейна: чуя форм непостоянство в этом мире-урагане, видел в кривизне пространства он галактик разбеганье».

1923 год: Немецкий математик Генрих Вейль отметил, что, если в модель пустой Вселенной де Ситтера добавить немного вещества, то взаимным тяготением объектов можно пренебречь, а «отталкивающее» влияние -члена должно привести к разлету объектов. Для малых взаимных расстояний скорость разлета оказалась пропорциональной расстоянию между объектами. К аналогичному выводу в этом же году пришел и знаменитый английский физик и астроном Артур Эддингтон.

1924 год: Карл Вирц публикует статью под названием «Де Ситтеровская космология и радиальные движения спиральных туманностей», в которой он впервые попытался найти зависимость между красным смещением (z) и расстоянием по данным о 42 туманностях. Расстояний до туманностей у него не было и тогда, предположив, что все они имеют одинаковый линейный размер, Вирц в качестве характеристики расстояния использовал логарифм углового диаметра. Оказалось, что, действительно, чем меньше угловой размер, тем, в среднем, больше радиальная скорость туманности. Зависимость оказалась не слишком отчетливой (коэффициент линейной корреляции был равен -0.455), однако вполне достаточной, чтобы предположить существование реальной связи между z и расстоянием.

В этом и в следующем годах подобными работами с переменным успехом занимались и другие исследователи (например, Людвиг Зильберштейн, Кнут Лундмарк, Густав Стремберг). Результаты были неуверенными, искомая зависимость оставалась миражом: «нанося лучевые скорости против относительных расстояний, мы находим, что между двумя величинами может быть связь, хотя и не очень определенная» (К. Лундмарк, 1924). Причинами такого положения являлись, во-первых, отсутствие надежных оценок расстояний до туманностей и, во-вторых, слишком маленький диапазон доступных лучевых скоростей и расстояний (к этому времени Весто Слайфер уже почти исчерпал возможности своего 24-дюймового рефрактора). Ключ к решению этих проблем был в руках у Эдвина Хаббла, который через несколько лет подключится к поиску наблюдательной зависимости между красным смещением и расстоянием.

1925 год: Жорж Леметр (рис. 18) бельгийский католический священник, астроном и математик, публикует свою первую работу по космологии. Леметр проанализировал модель, описывающую мир де Ситтера в системе отсчета, связанной с внесенными в этот мир пробными частицами. В частности, развивая соображения, высказанные ранее Эддингтоном, он дал математическое описание присущей модели де Ситтера внутренней нестатичности.

1927 год: Жорж Леметр заново открывает нестационарные решения уравнений ОТО. Чисто математически работы Леметра и Фридмана очень похожи (за исключением того, что Леметр в своих уравнениях учел вклад давления излучения). Однако в вопросе о связи модели с реальностью Леметр, сделал следующий важный шаг. Во-первых, он впервые в явном виде выписал ожидаемую в модели расширяющейся Вселенной связь между скоростью и расстоянием: r. Во-вторых, он проанализировал доступные данные о скоростях и расстояниях галактик (работами Хаббла было уже доказано, что «спиральные туманности» — это «внегалактические туманности» или просто «галактики») и заключил, что между ними, действительно, есть связь. Леметр даже смог оценить значение коэффициента пропорциональности H0 зависимости = H0xr : H0 = 625 км/с/Мпк. (Коэффициент H0 позднее стали называть «постоянная Хаббла», а саму эту зависимость — «закон Хаббла».) В статье Леметра было впервые публично заявлено, что «скорости удаления внегалактических туманностей представляют собой космический эффект расширения вселенной».

Поделиться:
Популярные книги

Полковник Империи

Ланцов Михаил Алексеевич
3. Безумный Макс
Фантастика:
альтернативная история
6.58
рейтинг книги
Полковник Империи

Брачный сезон. Сирота

Свободина Виктория
Любовные романы:
любовно-фантастические романы
7.89
рейтинг книги
Брачный сезон. Сирота

Инферно

Кретов Владимир Владимирович
2. Легенда
Фантастика:
фэнтези
8.57
рейтинг книги
Инферно

Темный Охотник

Розальев Андрей
1. КО: Темный охотник
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Темный Охотник

Восьмое правило дворянина

Герда Александр
8. Истинный дворянин
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Восьмое правило дворянина

Неудержимый. Книга XI

Боярский Андрей
11. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XI

Я — Легион

Злобин Михаил
3. О чем молчат могилы
Фантастика:
боевая фантастика
7.88
рейтинг книги
Я — Легион

Попаданка в Измену или замуж за дракона

Жарова Анита
Любовные романы:
любовно-фантастические романы
6.25
рейтинг книги
Попаданка в Измену или замуж за дракона

Ваше Сиятельство 2

Моури Эрли
2. Ваше Сиятельство
Фантастика:
фэнтези
альтернативная история
аниме
5.00
рейтинг книги
Ваше Сиятельство 2

Смертник из рода Валевских. Книга 1

Маханенко Василий Михайлович
1. Смертник из рода Валевских
Фантастика:
фэнтези
рпг
аниме
5.40
рейтинг книги
Смертник из рода Валевских. Книга 1

Титан империи 6

Артемов Александр Александрович
6. Титан Империи
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Титан империи 6

Цеховик. Книга 1. Отрицание

Ромов Дмитрий
1. Цеховик
Фантастика:
попаданцы
альтернативная история
5.75
рейтинг книги
Цеховик. Книга 1. Отрицание

Рота Его Величества

Дроздов Анатолий Федорович
Новые герои
Фантастика:
боевая фантастика
8.55
рейтинг книги
Рота Его Величества

Попаданка в деле, или Ваш любимый доктор

Марей Соня
1. Попаданка в деле, или Ваш любимый доктор
Фантастика:
фэнтези
5.50
рейтинг книги
Попаданка в деле, или Ваш любимый доктор