Чтение онлайн

на главную

Жанры

Почему у пингвинов не мерзнут лапы? И еще 114 вопросов, которые поставят в тупик любого ученого

О'Хэйр Мик

Шрифт:

Бернд Эгген

Университет Эксетера,

Девон, Великобритания

Примерно через 20 минут после начала нагревания начинается по-настоящему интересная фаза конвекции. Перепады температур в слое масла достигают определенной критической величины, выясняется, что каждый из многочисленных рассеянных конвективных потоков в масле лучше сохраняет энергию, если делит зону нисходящего тока с непосредственными соседями. Сложности с противотоком исчезают. Такое совместное перераспределение очагов конвекции приводит к образованию рисунка

плотных конвективных ячеек. Они имеют вид медовых сот для того, чтобы площадь соприкосновения со стенками соседних ячеек была максимальной.

Ввиду таких совместных действий ячеек конвекция значительно усиливается, восходящий поток горячего масла образует маленький фонтанчик в центре каждой ячейки. Сила, благодаря которой сохраняется рисунок ячеек, несмотря на механические и термические препятствия, – поток тепловой энергии, проходящий вверх через слой масла. Точно так же биологической системе необходимо распределение энергии (в данном случае пищевой) для сохранения целостности.

Существенный рост перепада температур приводит к распаду узора ячеек, этот процесс делится на несколько усложняющихся стадий и наконец становится хаотическим.

Роджер Керси

Натли, Восточный Суссекс, Великобритания

Можно теоретически доказать, что наиболее эффективный рисунок тока в жидкости с большой площадью поверхности, в слое которой происходит перенос тепла со дна вверх, – шестиугольники, ширина которых равна толщине слоя жидкости. Горячая жидкость поднимается в центре ячеек, остывает на поверхности и затем погружается на дно по периметру шестиугольника. Подобный узор ячеек можно увидеть в любом масштабе: от миллиметровых экспериментальных сосудов до поверхности Солнца.

Гэри Одди

Крэнфилд, Бедфордшир, Великобритания

Выше читатели уже дали ответы на вопрос, но, как указывает автор ответа, приведенного ниже, объяснения рэлеевской модели конвекции были не вполне корректными, поскольку эта модель применима лишь для нагревающейся жидкости достаточной глубины. – Ред.

Поведение горячего масла на сковороде – классический пример конвекции Бенара, нестабильного движения жидкости на нагреваемой ровной поверхности, которое приводит к образованию в циркулирующей жидкости правильных шестиугольных ячеек. Известно, что лорд Рэлей разработал теорию, объясняющую эту нестабильность. Но мало кто знает, что его теория была неверной.

Рэлей рассматривал горизонтальный слой жидкости на нагреваемой плоской поверхности и подразумевал, что нестабильность принимает форму параллельных, вращающихся в противоположные стороны вальцов, движимых силами плавучести ввиду разной плотности жидкости. Затем в ходе рассуждений он пришел к выводу, что размер шестиугольных ячеек близок – по счастливой случайности – к размеру ячеек, наблюдаемых Бенаром. Кроме того, Рэлей предсказал минимальный перепад температур в слое при возникновении этого движения, но он оказался примерно в 100 раз больше, чем перепад, который требовался для возникновения ячеечного потока в экспериментах Бенара.

Другие исследователи по-своему дополнили анализ Рэлея. Если не принимать верхнюю поверхность жидкости плоской, ясно, что она приподнята между соседними восходящими вальцами и понижена над нисходящими потоками жидкости. Это явление прямо противоположно тому, которое наблюдал Бенар. Когда эксперимент Бенара повторили, оказалось, что ячейки также могут возникать при охлаждении нагреваемой поверхности, в то время как, согласно Рэлею, при этом жидкость должна находиться в покое. Нестабильность также наблюдалась в слое жидкости под поверхностью, нагреваемой сверху, и в пространстве, где величина силы притяжения, а следовательно, и сила плавучести равнялась нулю.

В конце 50-х годов ХХ века была разработана новая модель конвекции Бенара, в которой жидкость приводило в движение изменение поверхностного натяжения, вызванное перепадами температуры на поверхности жидкости. Эта модель также позволяла предсказать понижение поверхности жидкости над восходящими потоками. В реальных условиях должны присутствовать оба эффекта – Бенара и Рэлея. Преобладание одного из них зависит от конкретных условий. Силы плавучести регулируют движение в жидкости, когда у нее нет свободной поверхности или когда слой жидкости толще 10 мм; в противном случае поток регулируют силы поверхностного натяжения.

Какие бы движущие силы ни преобладали, они должны быть достаточными, чтобы преодолеть сопротивление вязкости, препятствующее движению, и диффузию тепла внутри жидкости (которая сглаживает перепады температур) прежде, чем возникнет нестабильный поток. Для потоков, регулируемых силами плавучести, появление нестабильности определяется числом Рэлея: отношение сил плавучести к зависимости сопротивления вязкости от теплопереноса, в то время как для потоков, управляемых силами поверхностного натяжения, соответствующей переменной будет число Марангони, при котором силы поверхностного натяжения заменяют силы плавучести.

В тонких слоях жидкости нестабильный поток принимает форму правильных рядов шестиугольных ячеек независимо от формы сосуда. Для более толстого слоя жидкости основной нестабильный поток представляет собой ряд вальцов, параллельных сторонам сосуда, с направлением потока вдоль края и зависимостью от относительной температуры основания. Вальцы распадаются на многоугольные (не обязательно шестиугольные) ячейки при росте перепада температур.

Ричард Холройд

Кембридж, Великобритания

О черствости

«Почему печенье, оставленное на ночь без упаковки, к утру становится мягким, а французский багет, пролежавший без упаковки такое же время, твердеет так, что им можно убить?»

Лорна Холл

Бульон, Франция

В печенье содержится гораздо больше сахара и соли, чем в батоне. Измельченные сахар и соль гигроскопичны, они впитывают влагу из атмосферы, осмотическое давление в сладком печенье гораздо выше. Плотная текстура печенья создает капиллярный эффект и помогает удерживать влагу.

Поделиться:
Популярные книги

Сильнейший ученик. Том 1

Ткачев Андрей Юрьевич
1. Пробуждение крови
Фантастика:
фэнтези
боевая фантастика
аниме
5.00
рейтинг книги
Сильнейший ученик. Том 1

Ваантан

Кораблев Родион
10. Другая сторона
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Ваантан

Не грози Дубровскому! Том Х

Панарин Антон
10. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том Х

Сила рода. Том 1 и Том 2

Вяч Павел
1. Претендент
Фантастика:
фэнтези
рпг
попаданцы
5.85
рейтинг книги
Сила рода. Том 1 и Том 2

Газлайтер. Том 15

Володин Григорий Григорьевич
15. История Телепата
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Газлайтер. Том 15

Кодекс Охотника. Книга XXV

Винокуров Юрий
25. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
6.25
рейтинг книги
Кодекс Охотника. Книга XXV

Жандарм 3

Семин Никита
3. Жандарм
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Жандарм 3

Я все еще граф. Книга IX

Дрейк Сириус
9. Дорогой барон!
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Я все еще граф. Книга IX

Мимик нового Мира 4

Северный Лис
3. Мимик!
Фантастика:
юмористическая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 4

Титан империи 3

Артемов Александр Александрович
3. Титан Империи
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Титан империи 3

Я до сих пор не князь. Книга XVI

Дрейк Сириус
16. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я до сих пор не князь. Книга XVI

Кодекс Крови. Книга II

Борзых М.
2. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга II

Прометей: повелитель стали

Рави Ивар
3. Прометей
Фантастика:
фэнтези
7.05
рейтинг книги
Прометей: повелитель стали

Охотник за головами

Вайс Александр
1. Фронтир
Фантастика:
боевая фантастика
космическая фантастика
5.00
рейтинг книги
Охотник за головами