Почему у пингвинов не мерзнут лапы? И еще 114 вопросов, которые поставят в тупик любого ученого
Шрифт:
Средство Swarfega – либо гель, либо очень вязкая жидкость (фазовый переход возможен при обычных комнатных температурах). Есть что-то необычное в том, что самые распространенные вещества в природе обладают высокими внутренними потерями на трение, и при ударе по банке раздается глухой звук. Низкие внутренние потери Swarfega указывают, что на молекулярном уровне это вещество может обладать какой-то структурной упорядоченностью.
Поскольку это очищающее средство, у его молекул есть ионное окончание, которое соединяется с водой, и жировое окончание, которое вода отталкивает. Молекулы могут образовывать
Дж. М. Вудгейд
Рэлей, Эссекс, Великобритания
В плену пленки
«Почему пищевая пленка не липнет к металлической посуде так же хорошо, как к такой же гладкой стеклянной или керамической?»
Тим Блумфилд
Летчуорт, Хартфордшир, Великобритания
Пищевая, или упаковочная, пленка при отрывании от рулона приобретает электрический заряд. Затем она липнет к изолирующей поверхности по тому же принципу, по которому незаряженные клочки бумаги липнут к наэлектризованному экрану компьютера или телевизора.
Пленка прилипает к поверхности предмета, если между ним и пленкой имеется значительная разность электрических потенциалов. Это достигается, когда предмет служит изолятором. Если предмет металлический, заряд из пленки рассеивается в нем, нужный эффект не наблюдается.
Не липнет к посуде и старая пленка, давно оторванная от рулона. Спустя некоторое время пленка теряет заряд, а вместе с ним – и клейкие свойства.
Алистер Гамильтон
По электронной почте, без обратного адреса
Пищевая пленка приобретает статический заряд, когда ее отрывают от рулона. Можно почувствовать этот заряд, если оторвать кусок пленки и поднести его к лицу: вы ощутите, что волоски на щеке встали дыбом. Этот заряд проникает в металл, а в стекле или в пластике остается на поверхности. Чем больше статического электричества, тем надежнее держится пленка.
Джеффри Уэллс
По электронной почте, без обратного адреса
Кто шуршит?
«Откуда берется энергия, от которой тонкий белый пакет из супермаркета так громко шуршит?»
Люси Беркиншоу
Лестер, Великобритания
Эту энергию создаете в основном вы, потому что сам по себе пакет не шуршит. Шорох создают резкие движения, таких же можно добиться, если тереть или сгибать жесткую пластину. Пакеты делают из полиэтиленовой пленки, которая в отсутствие специальной обработки отличается податливостью, хорошо мнется и почти не издает шума. Она эластичнее, чем пластик, поэтому легко поглощает напряжение.
Но для изготовления пакетов пленку растягивают, чтобы она стала тонкой, удобной в обращении и настолько дешевой, чтобы выдавать ее бесплатно вместе с товарами. При этом молекулы выравниваются, образуют более жесткие поверхности. Чтобы пакеты выглядели лучше, а их содержимое не было таким заметным, производители добавляют в полиэтилен красители и затвердители. В итоге получаются пакеты, которые отзываются громким шорохом на каждое движение, прикосновение и трение.
Джон Ричфилд
Деннесиг, Южная Африка
Первое включение
«Почему нить лампочки обычно лопается, когда свет включают после перерыва, а не в конце длинного вечера, когда нить раскалена после длительной работы?»
Алан Стейтен
Сент-Айвс, Корнуолл, Великобритания
Когда лампочку включают, на тонкую нить накаливания обрушивается тройной удар.
От сопротивления металла повышается температура нити. При включении сопротивление составляет одну десятую долю обычного рабочего, поэтому через нить проходит ток силой, в десять раз превышающей расчетную величину, быстро нагревает нить и создает тепловое напряжение.
Если какая-нибудь часть нити тоньше остальных участков, она будет нагреваться еще быстрее. Удельное сопротивление на миллиметр длины окажется выше, чем в остальной нити, поэтому на данном участке тепло будет накапливаться быстрее, чем на соседних, в результате тепловое напряжение резко возрастет.
Вдобавок ко всему, нить представляет собой спираль, которая также действует как электромагнит. Из-за магнитных свойств соседние витки отталкиваются друг от друга, поэтому проходящий по нити ток оказывает воздействие на тонкую и хрупкую нить, создавая механическое напряжение.
Неудивительно, что бедняжка рвется при включении света.
Роберт Сениор
Аппингем, Ратленд, Великобритания
Чем выше сила электрического тока, который проходит через вольфрамовую нить обычной лампочки накаливания, тем сильнее нагревается металл. Когда лампочку только включают, температура нити очень быстро повышается, нить раскаляется добела. При таком быстром нагревании нить подвергается максимальному воздействию физического и теплового напряжения. Когда ток выключается, нить находится в тепле лампочки, поэтому температура изменяется медленнее, чем при включении. Следовательно, вероятность, что нить лопнет при включении, гораздо выше, чем во время работы или при остывании после включения.
Росс Х. Клеменс
Норт-Наррабин, Новый Южный Уэльс, Австралия
Нить накаливания лампочки лопается при включении тока потому, что сила тока и температура при этом максимальны. Если измерить сопротивление холодной нити лампочки, обнаружится, что оно гораздо меньше расчетного.
Для 100-ваттной лампочки сопротивление, измеренное мной в холодном состоянии, составило всего 6 Ом, а в горячем – около 140 Ом. Таким образом, сила тока и температура гораздо выше при включении, чем после того, как лампочка уже поработала некоторое время и достигла расчетной температуры. Это особенно справедливо для тех участков нити, где она истончилась от старости и испарения частиц металла. Большая начальная сила тока действует на эти участки нити, создавая температуру гораздо выше стандартной, отчего нить и плавится. Сразу после включения лампочки выполняют более трудную работу, тонкие участки нити нагреваются гораздо сильнее, чем просто при эксплуатации.