Чтение онлайн

на главную

Жанры

Шрифт:

Рентген установил, что проникающая способность (или как ее называют — жесткость) икс-лучей зависит от напряжения тока, подведенного к трубке; чем больше разность потенциалов в рентгеновской трубке, тем «жестче» лучи. При малой разности потенциалов икс-лучи получаются «мягкие». Такие лучи применяют для просвечивания человеческого тела, дереза, картона. Более «жесткие» лучи обладают способностью проникать сквозь сталь и другие металлы.

Первую часть поставленной себе задачи Рентген решил.

Чтобы выяснить природу икс-лучей Рентген

применил уже испытанный прием — он попробовал воздействовать на них сильным магнитом и электрическим полем. Но ни магнит, ни электрическое поле заметного действия на икс-лучи не оказали. Как и световые лучи, икс-лучи магнитным или электрическим полем не отклонялись.

Это доказывало, что икс-лучи, рожденные катодной трубкой, по своим свойствам резко отличаются от катодных лучей, и, следовательно, их природа — различна.

Вот и все, что узнал Рентген о своих лучах. Какова их природа, в чем причина их возникновения, как они образуются — этого ученый не объяснил.

Он и не мог этого объяснить, потому что не. признавал существования электрона, не хотел принять новой прогрессивной электронной теории. А между тем электронная теория делала успех за успехом и легко смогла объяснить и причину перекала анодной части нити лампочки, смущавшего Эдисона, и загадочную природу икс-лучей, не разгаданную Рентгеном, и целый ряд других явлений.

Рис. 48. Рентгеноснимок ноги в ботинке.

Вредное становится полезным

Термоэлектронная эмиссия, губившая лампочки Эдисона, оказалась не только вредным явлением. Она была использована учеными во многих приборах и в том числе для усовершенствования рентгеновских трубок. Вредное стало полезным.

В современной рентгеновской трубке катодом служит короткая спираль из тугоплавкой вольфрамовой проволоки. Эта спираль накаливается электрическим током напряжением в 8—12 вольт и служит источником электронов.

Электроны массами вылетают из раскаленной проволоки, но образовать вокруг нее облака не могут: к аноду рентгеновской трубки приложено высокое напряжение — не менее 50 000 вольт.

Гигантская разность потенциалов, подобно урагану, подхватывает вылетевшие электроны от катода и стремительно уносит их к аноду.

Скорость полета электронов в рентгеновской трубке достигает 200 000 километров в секунду и более, тогда как скорость винтовочной пули составляет только 800 метров в секунду. Пуля при ее сравнительно небольшой скорости, ударившись о броню, расплавляется. В момент удара энергия движения пули преобразуется в теплоту.

В момент удара электрона о поверхность анода или антикатода энергия его движения также преобразуется. Часть ее тратится на то, чтобы раскачать атомы металла анода (анод сильно нагревается, и его приходится охлаждать проточной водой), часть же энергии электронов преобразуется в энергию квантов нового мощного излучения — получаются рентгеновские лучи.

Тут

происходит явление, несколько напоминающее то, что происходит в оболочке атома, когда образуются кванты видимого света. Каждый «прыжок» электрона в оболочке атома с более высокого уровня на более низкий рождает квант света. Причем энергия кванта в точности равна энергии, потерянной атомом при одном «прыжке» электрона.

В рентгеновской трубке электроны совершают гораздо большие прыжки — они перелетают с катода на анод. По дороге электроны сильно разгоняются в электрическом поле и при ударе теряют большую энергию.

Чем большую разность потенциалов проходит электрон, тем большую скорость он приобретает и тем больше энергии теряет при ударе, а следовательно, тем больше энергия излучаемых рентгеновских квантов.

В современных рентгеновских аппаратах применяется напряжение от 50 тысяч и до двух миллионов вольт. При этом возникают такие жесткие лучи, что с их помощью фотографируют внутреннее строение очень крупных металлических изделий: валов машин, стенок паровых котлов и т. д.

В приборах, созданных советскими учеными Терлецким и Векслером, удается разгонять электроны до скоростей, приближающихся к скорости света!

Ударяясь об анод, такие электроны рождаю г лучи, которые превосходят по своей проницающей способности даже гамма-лучи, образующиеся в атомах радиоактивных элементов при их распаде. Мощные советские рентгеновские аппараты превратились в приборы для получения и использования гамма-излучения.

Искусственные гамма-лучи дают возможность просвечивать слои тяжелых металлов большой толщины.

Эта победа советской науки показывает, как ученые, проникая в сущность явлений, научаются управлять ими и использовать их для практических целей.

Применение рентгеновских лучей

Первый рентгеновский аппарат в России построил в 1896 году Александр Степанович Попов для кронштадтского госпиталя.

К настоящему времени рентгеновские аппараты и приемы работы с ними достигли большого совершенства. В Советском Союзе есть несколько заводов, изготовляющих рентгеновские аппараты и фотоматериалы для них. Созданы мощные рентгеновские установки для сложных исследований и легкие переносные приборы, которые умещаются в двух небольших чемоданах.

В нашей стране, где осуществлено бесплатное медицинское обслуживание населения, рентгеновская аппаратура широко применяется в поликлиниках, больницах и санаториях. В случае надобности рентгеновские аппараты доставляют к больному на дом.

Рентгеновские лучи пригодились в медицине не только для просвечивания. Они оказались также хорошим лечебным средством и помогают врачам бороться со злокачественными опухолями и другими тяжелыми недугами.

Широкое применение нашли рентгеновские аппараты в советской промышленности. Их устанавливают в цехах, в заводских лабораториях, с их помощью проверяют качество изделий. Скрытые трещины, внутренние пороки, раковины, совершенно незаметные при наружном осмотре, не могут укрыться от проницательного взора инженера-рентгенографа.

Поделиться:
Популярные книги

Пенсия для морского дьявола

Чиркунов Игорь
1. Первый в касте бездны
Фантастика:
попаданцы
5.29
рейтинг книги
Пенсия для морского дьявола

Вечный. Книга II

Рокотов Алексей
2. Вечный
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга II

Сумеречный Стрелок 4

Карелин Сергей Витальевич
4. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 4

Все не так, как кажется

Юнина Наталья
Любовные романы:
современные любовные романы
7.70
рейтинг книги
Все не так, как кажется

Архил...?

Кожевников Павел
1. Архил...?
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Архил...?

Газлайтер. Том 16

Володин Григорий Григорьевич
16. История Телепата
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Газлайтер. Том 16

Идущий в тени 4

Амврелий Марк
4. Идущий в тени
Фантастика:
боевая фантастика
6.58
рейтинг книги
Идущий в тени 4

Кодекс Охотника. Книга VII

Винокуров Юрий
7. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
4.75
рейтинг книги
Кодекс Охотника. Книга VII

Дворянская кровь

Седой Василий
1. Дворянская кровь
Фантастика:
попаданцы
альтернативная история
7.00
рейтинг книги
Дворянская кровь

Мимик нового Мира 4

Северный Лис
3. Мимик!
Фантастика:
юмористическая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 4

Сумеречный Стрелок 3

Карелин Сергей Витальевич
3. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 3

Начальник милиции

Дамиров Рафаэль
1. Начальник милиции
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Начальник милиции

Без шансов

Семенов Павел
2. Пробуждение Системы
Фантастика:
боевая фантастика
рпг
постапокалипсис
5.00
рейтинг книги
Без шансов

Сумеречный Стрелок 5

Карелин Сергей Витальевич
5. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 5