Покоренный электрон
Шрифт:
Итак, сетки первого резонатора рубят электронный поток на отдельные стаи и уплотняют их, сбивая электроны в «пакеты».
Подлетая к сеткам второго резонатора, который называется улавливателем, эти электронные сгустки-пакеты обрушиваются на них подобно волнам морского прибоя.
Сгустки один за другим проходят сквозь сетки улавливателя и в силу индукции отдают им свою энергию, возбуждая во втором резонаторе колебания той же частоты, что и в первом, но более мощные. Потеряв в улавливателе значительную часть своей энергии, «отработавшие» электроны налетают на коллектор, который выводит их из лампы.
Но невольно возникает
Это устанавливается между обоими резонаторами связь, благодаря которой клистрон самовозбуждается, как и обычная генераторная лампа с обратной связью в колебательном контуре.
В последние годы чаще всего применяют клистроны, работающие на волнах от 9 до 11 и от 3 до 3,3 см. Но уже изготовляются клистроны и для волн в 7–8 миллиметров.
В вихре магнитного поля
Еще раньше клистрона появился другой прибор, тоже предназначенный для создания очень коротких радиоволн и названный магнетроном.
Магнетроны отличаются от всех остальных радиоламп тем, что управление электронным потоком производится в них не электрическим полем сетки, а магнитным. Если электрическое поле сравнимо с обычным ветром, то магнитное поле — это вихрь или смерч.
Электрон, пересекая магнитное поле, движется по дуге окружности, и чем сильнее поле, тем круче изогнется траектория полета электрона. Электрон в магнитном поле вьется, как песчинка, подхваченная вихрем (рис. 90).
Рис. 90. Движение электрона, попавшего в магнитное поле.
Эту особенность магнитного поля использовали для создания магнетронов. Первый в мире мощный магнетрон построили в 1939 году советские инженеры Д. Е. Моляров и . Ф. Алексеев.
В магнетроне только два электрода — анод и катод; сеток нет. Анод изготовлен в виде полого, металлического цилиндра с толстыми стенками. Катод имеет форму палочки или стержня и помещается внутри полости анода в самом ее центре, то есть он расположен по оси анода. В стенках анода, параллельно его оси, высверлены каналы, соединенные боковой стороной с внутренней полостью магнетрона; это объемные резонаторы (рис. 91).
Рис. 91. Основные части разрезного магнетрона. Электроны крутятся вихрем вокруг катода. Электрические колебания возникают внутри каждого цилиндрического канала, разрез которого служит конденсатором.
Оба электрода находятся в сильном магнитном поле, направленном так, что его силовые линии пронизывают пространство между анодом и катодом вдоль их оси.
На катод, как и в обычной лампе, подают отрицательное напряжение, на анод — положительное.
Катод подогревают электрическим током. Он испускает электроны. Увлекаемые электрическим полем, электроны мчатся от катода к аноду. Если б не было магнитного поля, они полетели
Но магнитное поле диктует им свои законы. Пересекая магнитные силовые линии, электроны сворачивают с прямого пути и несутся по кругу, как щепки, попавшие в водоворот.
Напряжение на электродах и сила магнитного поля подобраны с таким расчетом, чтобы электроны поворачивали обратно к катоду как раз возле самой поверхности анода. Они скользят вдоль анода и летят назад. Ток через магнетрон почти не идет.
Электроны же, вылетая из раскаленного катода, накапливаются в «вихре» магнитного поля: в пространстве между катодом и анодом сосредоточивается мощный электрический заряд.
Этот заряд не остается неизменным, на нем сказывается влияние полых резонаторов, высверленных в стенках анода. Под их воздействием электронный вихрь начинает пульсировать, он то сжимается, то расширяется. Но, расширяясь, электронный вихрь каждый раз касается анода.
На анод обрушиваются миллиарды миллиардов электронов сразу. Возникает резкий отрывистый толчок, создающий в цепи анода колебания электрического тока. Такие толчки следуют один за другим — магнетрон генерирует колебания.
Эти колебания происходят с частотой, которая определяется размерами резонаторов и устройством магнетрона.
Анодное напряжение на магнетрон подается не все время, а только на очень короткие промежутки времени мощными импульсами, например, на одну стотысячную долю секунды через каждую сотую долю секунды. После каждого такого импульса магнетрон, создав в течение его колебания огромной мощности, может «отдохнуть», а общий расход затраченной в секунду энергии оказывается не очень большим — магнетрон каждую 0,00001 секунды работает, а 0,01 секунды отдыхает.
В результате разных усовершенствований, соединив в себе колебательный контур с мощной лампой, магнетрон стал очень портативным прибором.
Современный мощный магнетрон свободно умещается на ладони. Несмотря на столь скромные размеры, он служит генератором исключительно мощных электромагнитных колебаний (рис. 92).
Рис. 92. Внешний вид магнетрона.
Магнетрон, создающий радиоволны длиной около 3 сантиметров, способен на короткие промежутки времени развивать мощность свыше тысячи киловатт, а магнетрон, предназначенный для генерации радиоволн около 10 сантиметров, развивает мощность в 2500 киловатт. Это делает магнетрон незаменимым прибором для радиолокационных станций, которые должны посылать сигналы мощными короткими импульсами.
Глава десятая. Современный «Золотой петушок»
Полет летучих мышей
Летучая мышь издавна интересовала натуралистов. Это очень странный зверек. Глаза у него крошечные, слабые; с такими глазками даже днем трудно что-либо разглядеть, а летучие мыши летают ночью, охотятся впотьмах, да еще как ловко охотятся! Черными стрелами носятся они меж ветвей деревьев или под стропилами крыш, на лету ловят комаров и ночных бабочек, и при этом ни разу не заденут крылом за ветку или за балку.