Политическая наука №1 / 2018
Шрифт:
Но вернемся к так называемому кубическому закону. Это не был на самом деле закон, а всего лишь эмпирическая закономерность. Чтобы квалифицировать ее как закон в строгом научном смысле, мы должны также иметь обоснование, почему взаимосвязь должна иметь ту форму, которую имеет, почему она не может быть никакой другой формы. Вот что меня озадачивало. И ответ был найден.
Чтобы объяснить феномен, попытайтесь поместить его в более широкий контекст. Здесь взаимосвязь необязательно кубическая. Результат зависит от общего количества мест. Действительно, там, где на кону только одно место, как на президентских выборах, отношение голосов 60:40 приводит к отношению мест, равному не 77:23, а 100:0.
Позвольте, могут воскликнуть некоторые политологи, неужели вы, глупые физики, не знаете, что президентские и парламентские выборы – это совершенно разного рода вещи? Вы не можете поместить их в одну модель.
4
По некоторым другим аспектам президентские выборы отличаются от парламентских, потому что экстремальные случаи всегда необычны. Одной из целей Шугарта и Таагеперы [Shugart, Taagepera, 2017] является определение количественных аспектов, по которым можно выяснить, где и как начинаются отличия президентских выборов от парламентских.
Здесь V – общее количество голосов, S – общее количество мест. Сейчас я называю эту модель законом сокращения меньшинства, потому что она может применяться более широко, за пределами выборов. Например, она описывает соотношение женщин и мужчин среди ассистентов и профессоров [Taagepera, 1994]. Рассмотренный под другим углом, этот закон также создает паттерн, по которому Европейский союз распределил места в Европейском парламенте между странами [Taagepera, Hosli, 2006].
Сокращение меньшинства выражается в так называемом кубическом законе, когда количество мест в ассамблее составляет кубический корень количества избирателей, соответствующего численности населения. К своему удивлению, я нашел, что это так в большинстве демократических стран. Путем проб и ошибок страны обнаружили, что кубический корень численности населения – это наиболее эффективный размер законодательного собрания. То есть страна с 8 миллионами населения обычно имеет представительное собрание из 200 человек, так как 200 х 200 х 200 = 8 миллионов.
Но почему такой размер наиболее эффективный? Здесь мы подходим к модели оптимальной децентрализации Кохена и Дойча [Kochen, Deutsch, 1969]. Они задались вопросом о том, какое оптимальное количество складских помещений нужно фирме, чтобы обслуживать регион. Если склад только один, то транспортные издержки будут слишком высоки из-за расстояний. Если складов много, то доставка будет дешевле, но возрастут фиксированные издержки на поддержание складов. Иными словами, капитальные затраты растут пропорционально числу складов, в то время как затраты на обслуживание снижаются обратно пропорционально этому числу. Кохен и Дойч выразили это при помощи уравнения. Они дифференцировали это уравнение и нашли решение для числа складов, соответствующего минимальным общим издержкам.
Этот подход годится и для определения размера собраний. Рассмотрим коммуникационную нагрузку на отдельного члена собрания 5 . В большем собрании ее или его нагрузка количеством избирателей снижается, но нагрузка внутри собрания повышается. Применив логику Кохена и Дойча, мы находим, что общая коммуникационная нагрузка на представителя собрания минимальна, когда количество представителей равно кубическому корню размера населения.
Вспомним, что для «закона» в строгом научном смысле нам нужна не только эмпирическая связь и не только симпатичная логическая модель – нам нужно и то и другое вместе 6 . Для случая нижней (или единственной) палаты у нас действительно есть и то и другое. Поэтому взаимосвязь можно квалифицировать как закон кубического корня для размера собраний:
5
«Процесс передачи информации в ходе общения – цемент, на котором держатся организации», – отмечал Дойч [Deutsch, 1964, p. 77] в «Силе правительства», процитированной затем Норбертом Винером.
6
Испытанием является получение данных, которые бы находились в согласии с задуманной заранее моделью. В таких случаях можно либо исправить модель, либо пересмотреть данные.
S = P1/3.
Все эти исследования стали увлекательнее физики текстильных волокон, поэтому я начал искать работу в политологии. Я отправил письма в 120 соответствующих департаментов и попросил их выбросить мое письмо, если они считают, что политология находится в хорошем состоянии как наука. Но если они думают, что политологии все еще нужно стать наукой, то я тот человек, который может перевернуть всю дисциплину.
Всего лишь один университет «клюнул», оценив мое предложение. Это был только что созданный кампус Университета Калифорнии в городе Ирвинге. Мне ответили: «Вы – странный социальный исследователь, мы – странная Школа социальных наук. Возможно, мы подходим друг другу». И действительно, мы вместе уже более пятидесяти лет.
Присужденная мне премия ставит во главу угла междисциплинарные исследования, мастером которых был сам Карл Дойч. Насколько ей соответствует моя работа? В «American Anthropologist» напечатана моя работа о распространении цивилизаций [Taagepera, Colby, 1979], а в «Linguistica Uralica» – статья о грамматических сходствах евразийских языков [Taagepera, K"unnap, 2005]. Недавно я опубликовал модель, описывающую, как мировой рост населения взаимодействует с технологией и ограниченным пространством [Taagepera, 2014]; она скрупулезно отражет данные о динамике мирового населения за последние 16 столетий. С учетом такой глубины трендов можно предположить резкое сокращение роста населения из-за недостатка территории при достижении потолка в 10,2 млрд человек (да, настолько точно), с небольшим зазором для отклонения.
Точно так же я построил и протестировал модели, описывающие влияние численности населения страны на отношение ее торговли к ВВП [Taagepera, 1976] и на размер ее городов [Taagepera, Kaskla, 2001]. Я изучал, как коммунизм взаимодействует с культурой и коррупцией. Была эта работа междисциплинарной, интердисциплинарной или же просто мультидисциплинарным «шведским столом» не связанных друг с другом исследований? Общей нитью для них было то, что я применял методы, заимствованные из физики.
Наиболее явно эта установка проявляется в моих электоральных исследованиях, например, в книге «Места и голоса» [Taagepera, Shugart, 1989]. Я написал ее вместе со студентом-магистрантом Мэттом Шугартом. После этого я продолжил свои исследования в книге «Прогноз размера партий: логика простых электоральных систем» [Taagepera, 2007]. У Мэтта появилась своя заметная книга «Президенты и ассамблеи» [Shugart, Carey, 1992]. Сейчас мы завершаем совместную книгу с гораздо более глубокими идеями. Эта наша новая книга под названием «Голоса ради мест. Логические модели избирательных систем» [Shugart, Taagepera, 2017] совершенно точно превзойдет предыдущую – «Места и голоса».
Могут ли эти книги предложить что-то тем политологам, которым неинтересны электоральные исследования? Да, могут, потому что они подают пример для подражания – изучение связей между связями.
Действительно, устанавливать связи между связями – это отличительный признак развитой науки. Неплохо иметь отдельные уравнения, связывающие индивидуальные факторы, такие как x с y или A с B или, может быть, S c V. Но это будет похоже на карту железных дорог Африки: изолированные пути, связывающие порты с некоторыми пунктами во внутренних землях. Пути не взаимосвязаны. Сравните это с железными дорогами в Европе: вы можете попасть из Познани (место проведения нынешнего Всемирного конгресса МАПН) на практически любую другую железнодорожную станцию в Европе, пересаживаясь с одного поезда на другой. Пути взаимосвязаны. Вот что я имею в виду, когда говорю о связях между связями: уравнения, связывающие x с y, A с B и S c V, тоже связаны. Возьмите в качестве примера электричество. Электричество предполагает сеть уравнений, связывающих такие факторы, как электрический заряд, напряжение, интенсивность тока, сопротивление, сила и мощность [Taagepera, 2008, p. 66–70] 7 .
7
Заметьте, что я говорю о факторах, а не о переменных. «Переменные» – термин статистики. Его использование повышает риск отвлечения внимания от реальных фактов и факторов, с которыми мы работаем, таких как напряжение и сопротивление, количество мест и голосов, на абстрактные математические x и y. Отрицательное значение переменной x не заставляет повести бровью. Отрицательное же количество мест – напротив.