Получение энергии. Лиза Мейтнер. Расщепление ядра
Шрифт:
Именно тогда Ирен Кюри сделала ключевое открытие. В 1938 году с помощью своего сотрудника Павла Савича она осуществила бомбардировку урана термальными нейтронами, и среди продуктов реакции было обнаружено вещество, которое прежде не замечали, с периодом полужизни 3, 5 часа. Вначале исследователи решили, что перед ними изотоп тория, получивший название куриозум. Берлинскую группу этот результат шокировал: им казалось, что такого не может быть. Мейтнер считала, что медленные нейтроны не могут превращать уран в торий. Они воспроизвели эксперимент, стараясь обнаружить торий среди продуктов реакции, но не нашли его. После этого Мейтнер связалась с Кюри, чтобы та отозвала свою статью, хотя, как потом сожалела Лиза, если бы они искали продукт с временем распада в 3, 5 часа, все могло быть по-другому.
В
В ноябре 1938 года произошла встреча Лизы Мейтнер, Отто Гана и Нильса Бора в Институте теоретической физики в Дании, имевшая огромное значение. Встреча держалась в тайне, так как Гана из-за нее могли обвинить в измене и уволить. На ней Мейтнер настаивала, что радий получиться не мог, поэтому нужно продолжать исследования природы нового элемента. Позже Штрассман объяснял:
«К счастью, мнение Мейтнер имело для нас такое важное значение, что мы сразу же принялись за контрольные испытания».
В качестве носителя ученые использовали барий, так как он входит в одну группу периодической таблицы с радием и имеет схожее химическое поведение. Удивительно, но все попытки отделить барий, использованный как проводник радия, не увенчались успехом: оставался только барий. Этот эксперимент был осуществлен в ночь с 16 на 17 декабря того года. Результат заставлял думать, что под воздействием нейтрона ядро урана раскалывается на две части. Дальше произошел тот обмен письмами, о котором мы говорили в главе 1. Мейтнер и ее племянник Отто Фриш высказали идею о расщеплении ядра атома на основании предложенной Бором модели ядра в виде капли воды.
НЕЯСНОСТЬ РАЗВЕИВАЕТСЯ
Ган и Штрассман опубликовали результат своего опыта с ураном 6 января и 1 февраля в престижном журнале Naturwissenschaften. Мейтнер не могла подписать эту статью, поскольку она уже покинула Берлин, а также потому, что ее фамилия могла создать проблемы для двух других авторов. Мейтнер и Фриш 11 февраля 1939 года опубликовали в журнале Nature статью, вводившую понятие ядерного расщепления с обоснованием управляющих им физических процессов.
Наконец-то стали понятны результаты опытов, которые они обдумывали в течение нескольких лет. С одной стороны, из трех выделенных ими процессов только в третьем случае, когда цепочка индуцированных реакций была самой короткой, образовывался стабильный трансурановый элемент. Этот элемент удалось обнаружить в 1940 году, и он получил название нептуний. Таким образом, существование трансурановых элементов нашло частичное подтверждение.
Мейтнер в 1959 году проводит свободную дискуссию со студентками в колледже Брин-Мор в Пенсильвании, США.
В 1962 году Отто Ган (в центре), Фриц Штрассман (слева) и Хайнц Габер реконструировали в Мюнхенском музее опыт по ядерному расщеплению 1938 года.
Много сомнений вызывали два других обнаруженных процесса. Для Мейтнер казалось бессмысленным, что воздействие нейтрона может вызывать такие длинные цепные реакции бета-распада. Теперь наконец стало понятно, что на самом деле эти цепные реакции возникали, когда уран разделялся на два больших фрагмента, соответствующих разным элементам (см. рисунок 7). В каждом из этих фрагментов, стремящихся к стабильности, возникали соответствующие цепочки распадов, которые исследователи обнаруживали в течение долгих лет.
РИС. 7
Благодаря идее о расщеплении то, что изначально было интерпретировано как два различных процесса, теперь стало пониматься как единый процесс.
СТАТЬЯ О РАСЩЕПЛЕНИИ
Мейтнер и Фриш опубликовали свое открытие в журнале Nature в начале 1939 года. Статья «Распад урана под воздействием нейтронов: новый вид ядерной реакции, подписанная Лизой Мейтнер и Отто Фришем, начиналась с напоминания о том, что исследование проводилось на основании работ Энрико Ферми:
«После бомбардировки урана нейтронами Ферми его сотрудники обнаружили, что у них получались как минимум четыре радиоактивных вещества, и двум из них было присвоено атомное число более 92».
Далее цитировались наблюдения Гана и Штрассмана, Жолио-Кюри, а также указывалось на ключевые экспериментальные данные:
«Ган и Штрассман были вынуждены признать, что изотопы бария (Z = 56) образуются в результате бомбардировки урана (Z = 92) нейтронами. [...] На первый взгляд данный результат сложно интерпретировать. Образование элементов, имеющих гораздо меньшее число, чем у урана, рассматривалось прежде, но всегда отвергалось на основании законов физики. [...] При рассмотрении видов энергии, участвовавших в деформации ядра, использовалось понятие поверхностного натяжения ядерной материи и была произведена оценка его величины. [...] Поверхностное натяжение ядра уменьшается при возрастании атомного числа. [В больших атомах, как в случае с ураном, поверхностное натяжение меньше, поэтому] мы вправе полагать, что ядро урана, имеющее довольно нестабильную форму, может разделиться на два ядра примерно одинакового размера после поглощения нейтрона. [Будут выпущены два атома с] общей кинетической энергией, равной 200 МэВ [...]».
Эта публикация, ставшая новой вехой на пути исследований радиоактивности, давала ответы на несколько вопросов, которые заставляли недоумевать ученых в течение четырех лет.
ГЛАВА 5
Цепная реакция
В результате процесса расщепления высвобождаются нейтроны, которые могут быть использованы для новых расщеплений атомных ядер. Количество цепных расщеплений возрастает экспоненциально, при этом возможно генерирование большого количества разрушительной энергии и создание атомной бомбы.
Всегда ли при расщеплении ядра урана высвобождаются нейтроны? Может ли процесс расщепления быть использован для получения энергии? Для ученого венгерского происхождения Лео Силарда (1898-1964) ответы на эти вопросы имели отношение к созданию атомной бомбы.
НЕЙТРОНЫ И ЦЕПНАЯ РЕАКЦИЯ
Силард в течение нескольких лет размышлял над возможностью цепной реакции. Уже в 1934 году он запатентовал свою идею, хотя еще сам не знал, как она будет осуществлена. Например, он предлагал использовать для реакции бериллий. Но самым важным было то, что в результате цепной реакции можно получить большое количество энергии. Многие представители научного сообщества в то время отвергали идею возможности использования такой энергии. В 1938 году Силард уехал в США и там начал исследовать расщепление с целью получения энергии.