Популярная библиотека химических элементов. Книга вторая. Серебро — нильсборий и далее
Шрифт:
107-й элемент мог в принципе образоваться при бомбардировке таллия железом, свинца марганцем, висмута хромом. Расчеты показали, что наибольшее сечение (вероятность образования ядер 107-го элемента) ожидается для ядерной реакции
На большом дубненском циклотроне получили пучок восьмизарядных ионов хрома достаточной интенсивности и энергии. После первых же облучений висмутовых мишеней
Пятисекундный период полураспада нового излучателя настораживал. Полностью исключить вероятность столь большого времени жизни ядра 281107 было, конечно, нельзя, однако намного более вероятно для таких ядер было бы время жизни порядка миллисекунды. Поэтому предположили, что пятисекундный излучатель — это не ядро 107-го элемента, а дочернее ядро — 257105, образующееся в результате альфа-распада ядер 107-го. Решили проверить эту догадку.
Были проведены эксперименты, в которых должны были образоваться ядра 257105, но не мог образовываться 107-й элемент — ядерные реакции висмута с титаном и свинца с ванадием. Пятисекундная активность вновь наблюдалась, принадлежность ее 105-му, а не 107-му элементу стала бесспорной (83+22 = 82+23 = 105).
После этого, настроив аппаратуру на регистрацию очень короткоживущих излучателей, повторили ядерную реакцию висмута и хрома, в которой должен образовываться 107-й элемент. В этих опытах и был «пойман» другой новый излучатель — с периодом полураспада (по спонтанному делению) около 2 миллисекунд.
При бомбардировке той же мишени ионами титана-50 и хрома-53 эта короткоживущая активность не регистрировалась, она появлялась только в реакции 209Bi и 54Cr. Это позволило сделать вывод о том, что именно в этой реакции образуется 107-й элемент, его изотоп с массой 261.
Пока о 107-м элементе известно немногое. Часть ядер 261107 — примерно 20% — распадается спонтанно, а остальные испускают по альфа-частице и превращаются в пятисекундный изотоп 257105.
Поскольку большинство ядер 261107 испытывает альфа- распад, физики надеются, что более тяжелые изотопы 107-го элемента будут жить дольше. Если это окажется так, то будут правы теоретики, утверждающие, что по мере приближения к атомным номерам около 114 время жизни сверхтяжелых ядер будет расти, и среди элементов второй сотни может существовать «остров стабильности».
Впрочем, получить сравнительно долгоживущие тяжелые изотопы 107-го элемента еще предстоит. Пока же наблюдалось лишь немногим больше ста событий, которые авторы исследования объясняют как распад изотопа 261107, весьма короткоживущего…
Первая научная публикация об элементе № 107 датирована 29 январи 1976 г.
Через пять лет в ядерной реакции висмута-209 с хромом-24 западногерманские физики получили еще один изотоп 107-го элемента — с массовым числом 262.
Вот пока и все, что известно об элементе № 107, замыкающем ныне таблицу Менделеева. Надолго ли?
А после 107-го?
Беседа
Вопрос: Первый вопрос не связан с проблемами трансурановых элементов. Он о взаимосвязи ядерной физики и периодической системы химических элементов…
Ответ: Синтез новых элементов это не самое трудное дело. Труднее доказать, что новое действительно получено. Благодаря периодическому закону физики, синтезирующие новые химические элементы, находятся в лучшем положении, чем мореплаватели, открывавшие когда-то новые острова и страны. Начиная работу, мы уже кое-что знаем о наших неоткрытых «островах»; это придает поискам изначальную целенаправленность.
Когда Менделеев вынашивал и создавал свой великий закон, еще не было такой науки — ядерной физики, еще не была открыта радиоактивность… Марии Склодовской-Кюри в день открытия периодического закона — 1 марта 1869 г. еще не было двух лет. Сама идея превращения элементов казалась тогда алхимической, ненаучной. Мне кажется, что это пошло на пользу науке, ибо эта идея могла в какой-то степени затруднить выявление тех закономерностей, которые Дмитрий Иванович обобщил в своем законе.
Интуитивно чувствуя чрезвычайную важность изучения последних по атомным номерам элементов, Менделеев направлял взоры исследователей в ту область системы элементов, на которой впоследствии взросла ядерная физика.
И если поначалу в среде физиков (я имею в виду ядерную физику) бытовало мнение, что их наука и периодическая система мало взаимосвязаны, то это была одна из самых короткоживущих идей. Ни физик, ни химик, ни любой другой ученый-естествоиспытатель не может, как бы он того пи желал, обойти законы природы. В том числе и периодический закон. А та область ядерной физики, в которой мне посчастливилось работать, расширяет границы периодической системы элементов, опираясь на самую систему.
Вопрос: Что с Вашей точки зрения, важнее — заниматься дальше изучением уже известных элементов и изотопов или синтезировать новые?
Ответ: Чем дальше отстоит изотоп от области стабильности, тем больше информации о строении ядра он может нам дать. Исследование вещества в экстремальном состоянии, в экстремальных условиях его существования — общий методологический подход, который используется и физиками, и химиками. Изотопы, далекие от области стабильности, — это и есть «экстремальный объект исследования».
Исследования сверхтяжелых ядер важны прежде всего тем, что они дают возможность получить максимум информации о строении ядра. Ради этого стоит тратить силы и средства на синтез и исследование новых элементов.
Вопрос: Что больше всего препятствует синтезу и идентификации элементов с атомными номерами больше 107 и как эти препятствия можно преодолеть?
Ответ: Главные препятствия — это слишком быстрый распад ядер, исчезающе малое время их жизни и все уменьшающееся сечение образования, т. е. «выход» новых ядер в ядерных реакциях. Но это не значит, что 107-й элемент — последний, замыкающий систему. Нужно пытаться синтезировать новые, все более тяжелые элементы, нужно искать их в природных объектах.