Популярная история - от Электричества до Телевидения
Шрифт:
Рис. 26. Модернизированный пишущий телеграф Морзе, по [23]
Осенью 1871 года, 19 октября, в Лондоне умер Чарльз Бэббидж — английский математик, специалист по почтовой связи, изобретатель первого механического вычислителя. В 1812 году — Чарльзу был 21 год — он стал реализовывать идею строительства механического вычислителя для математических таблиц. В 30 лет он получил правительственные субсидии для строительства 20-разрядной машины. В середине 40-х годов Бэббидж стал развивать план строительства аналитической машины — предшественника современного компьютера. Его машина включала все необходимые элементы ЭВМ, которые появились в 50-х годах 20-го века — ввод данных с перфокарт и исполнение инструкций по перфокартам, ячейки памяти, последовательный контроль операций. Машина Бэббиджа не была построена —
В 1871 году в Париже бельгиец Зеноб Грамм опередил немецкого предпринимателя Сименса и первым представил практический генератор постоянного тока, — «динамо». Грамм работал в компании Альянс столяром, познакомился с производством «машин Альянс» и оказался очень талантливым изобретателем. Приоритет в реальном создании кольцевого якоря возможно имеет итальянец Пачинотти (см. 1860 год), но бельгиец запатентовал свою независимо созданную конструкцию и стал производить свои машины.
«ГРАММ (Gramme) Зеноб Теофиль (4.4. 1826, Жеэ-Боденье, Бельгия, — 20.1. 1901, Буа-Коломб, Франция), бельгийский электротехник. Работал во Франции. В 1869 запатентовал схему кольцевого якоря, обеспечивающего получение электродвижущей силы и тока постоянного направления. В 1870 организовал „Общество производства магнито-электрич. машин Грамма“, выпускавшее электрич. машины различных типов с кольцевым якорем. В 1871 представил Академии наук в Париже первую динамомашину.» [14].
Рис. 27. Модернизированная «динамо» конструкции Грамма, по [23] /
1872 г. открытие Фонтена — Грамма — передача энергии на расстояние
Открытию электрической обратимости «динамо» и первой передаче энергии, произведенной паровой машиной, на большое расстояние, которое выполнили Фонтен и Грамм, помог невероятный случай. Дело было на Венской выставке 1872 года. Из двух машин Грамма одна работала от паровой машины, а другая ждала своей очереди на включение. Рабочий хотел подать ток с работающей машины на гирлянду осветительных ламп, но перепутал провода, и подключил выход одного «динамо» к входу другого «динамо» — и второе динамо пришло в движение! Это увидел работавший у Грамма техник Фонтен, он немедленно повторил опыт — ситуация повторилась. Экспериментаторы увеличили длину проводов от одного «динамо» до другого до 1000 метров и подключили ко второму «динамо» центробежный насос. Паровая машина вращала первую машину, ток от нее шел по проводам длиной в 1000 метров и поступал на вторую машину — она работала как мотор (!!!) и вращала центробежный насос. Бельгийцы Фонтен и Грамм с помощью австрийского невнимательного электрика совершили промышленный переворот — установили обратимость «динамо» как генератора и мотора научились передавать энергию с паровой машины по проводам на большое расстояние. По [10].
1873 г. «Трактат об электричестве и магнетизме» Максвелла
В 1873 году профессор ДжеймсМаксвелл в Оксфорде в издательстве Кларендон Пресс опубликовал свой фундаментальный труд «Трактат об электричестве и магнетизме», который служит по сей день основой всей электродинамики и теории поля.
«Когда в 1873 году появился «Трактат об электричестве и магнетизме», студенты сначала образовали давку в книжной лавке, а потом — увы! — их ожидало разочарование. Книга Максвелла оказалась еще более сложной, чем его лекции. В ней было более тысячи страниц, из которых лишь десяток (!) непосредственно относился к его системе уравнений. Однако сами уравнения разбросаны по всей книге, и их довольно много — двенадцать! Последующее изучение Герцем и Хевисайдом уравнений Максвелла показало, что некоторые из них могут быть выведены друг из друга, некоторые — вообще лишние и не отражают фундаментальных законов природы. Кроме того, изложение и обозначения Максвелла оставляли большой простор для пожеланий их улучшения. Как пишут исследователи, «сумбурность изложения. приходится признать типичной чертой его литературного творчества». И еще: «Трактат Максвелла загроможден следами его блестящих линий нападения, его укрепленных лагерей, его битв». [41].
5-й комментарий — уравнения Максвелла — что это?
Труд изданный профессором Джеймсом Максвеллом в 1873 году не содержал в цельном и привычном виде «уравнений Максвелла», которыми так любят преподаватели мучить студентов радиотехнических специальностей. Экзаменационный вопрос «Напишите уравнения Максвелла!» не имеет точного ответа. Студент должен смело ответить «А что это?» и будет удален из аудитории. Скажем же спасибо за дешифровку и редактуру гениального трактата Максвелла его гениальным ученикам, в первую очередь английскому гению Хевисайду и немецкому гению Герцу и еще многим-многим физикам, которые привели все в порядок, убрали лишнее, удалили из труда Максвелла «эфир» (не придется ли его возвращать?), удалили механические представления о вихрях поля (в труде Максвелла вихри нарисованы как шестеренки) и в таком виде эти уравнения студенты должны выучить, чтобы удовлетворить желание строгого преподавателя поставить вам на экзамене оценку выше «троечки».
1873 г. лампы Лодыгина
В 1873 году русский изобретатель Александр Лодыгин в Петербурге первым в мире применил лампы накаливания для уличного освещения. Но опыт оказался неудачным — лампы не имели надежной нити накаливания, были сложны в откачке, массивны и ненадежны — быстро перегорали. Первый блин ламп накаливания «вышел комом».
«Одними лабораторными демонстрациями А. Н. Лодыгин не ограничивался. Он применял свои лампы и для уличного и для внутреннего освещения. Так, в том же 1873 г., по свидетельству Н. В. Попона, на Одесской улице на Песках (ныне Советские улицы), в двух фонарях керосиновые лампы были заменены лампами Лодыгина. Лампы имели калильные тела, состоящие из стерженьков ретортного угля 2 мм в диаметре, помещенных в стеклянных баллонах, из которых был выкачан воздух. Лампы питались от магнитоэлектрической машины Альянс системы Ван Мельдерна. „Освещение своей яркостью привлекало внимание многочисленной публики, сравнивавшей электрическое освещение с керосиновым“. Это был первый в мире опыт уличного электрического освещения несколькими электрическими лампами.» [25].
1874 г. выпрямители Брауна, телеграфный код Бодо
В 1874 году немецкий ученый Карл Фердинанд Браун — профессор физики в университете Страсбурга, обнаружил, что контактная пара между металлом и различными колчеданами и сульфидами (например, пара металл-галенит) производит выпрямляющее действие при пропускании через нее переменного тока — тем самым Браун стал первооткрывателем технологии для изготовления диодов.
В 1874 году офицер французской телеграфной службы Жан-Морис Эмиль Бодо изобрел систему, основанную на использовании 5-позиционного двоичного кода, когда каждая буква алфавита была представлена уникальным сочетанием из пяти элементов. «Система Бодо» или «код Бодо» были впоследствии официально приняты телеграфными ведомствами во многих странах мира. Имя Бодо, в сокращенном виде бод в настоящее время используется в качестве единицы скорости передачи данных. Например, скорость 1000 бод означает передачу по линии связи 1000 символов в секунду.
1876 г. телефон Белла, ультразвук Кёнига
В 1876 году, 10 марта, изобретатель уроженец Канады Александр Белл позвонил со своего телефонного аппарата своему помощнику Томасу Ватсону, который находился у своего аппарата в соседней комнате и попросил его зайти к себе. Белл сказал: «Mr. Watson. Come here. I want to see you» — это первое распоряжение, данное по телефону — началась эра телефонной связи. Патент на изобретение телефона Александр Белл получил накануне — 7 марта.