Предчувствия и свершения. Книга 3. Единство
Шрифт:
Если скорость катера уменьшается, то угол, под которым разбегаются носовые волны, увеличивается. Когда же его скорость становится меньше, чем скорость движения волн на поверхности воды, носовые волны исчезают совсем.
Понять механизм образования носовой волны нетрудно. Бросим в воду камень. От места его падения во все стороны побегут круги. Сколько раз ни кидать камни в одно и то же место, ничего похожего на носовую волну не получится. Лишь круглые кольца волн будут одно за другим разбегаться от места падения камней. Но если кидать камни с грузовика, едущего по берегу быстрее, чем бегут волны по поверхности воды, картина изменится. Круги, возникающие
Попросим, чтобы шофер вел грузовик по берегу очень медленно, и повторим опыт. Теперь отдельные круги не смогут пересечься. Ведь все волны бегут с одинаковыми скоростями, а значит, круги не могут догнать друг друга и наложиться один на другой. Они разбегаются таким образом, что круги, образовавшиеся от падения первых камней, всегда остаются снаружи остальных.
Совершенно так же обстоит дело при движении катера. Разрезая форштевнем воду, катер образует волны. Если катер идет со скоростью большей, чем скорость волн, то в результате их сложения образуются носовые волны.
Носовые волны образуются не только на поверхности воды, но и во всяком другом случае, когда источник перемещается быстрее, чем бегут образуемые им волны. Пули и снаряды, скорость которых больше скорости звука в воздухе, образуют волну, тянущуюся за ними в виде узкого конуса. Такие же волны образуются за самолетом, летящим со сверхзвуковой скоростью.
Сильная сжимаемость воздуха, сопровождающаяся его нагреванием при сжатии, придает воздушной носовой волне особые свойства. По мере возникновения такой волны ее фронт становится все более крутым, скачок давления на ее фронте все более увеличивается. Вследствие этого новая волна в воздухе приобретает особенности ударной волны, образуемой при взрыве.
На заре сверхзвуковой авиации многие удивлялись взрывам, раздававшимся особенно часто при ясной погоде. Передавали друг другу различные варианты происхождения этих таинственных взрывов. Упоминались и аварии самолетов, и взрывы светильного газа, и многое другое.
Теперь все знают, что эти мощные удары вызываются не взрывом, а ударной волной — носовой волной, тянущейся за сверхзвуковым самолетом. Мощность этих волн так велика, что во избежание несчастных случаев сверхзвуковые самолеты не сближаются с обычными самолетами и не летают на малых высотах над населенными пунктами.
Опыт показал, что, летя на бреющем полете, сверхзвуковой самолет буквально звуком вышибает окна и двери в домах, разрушает легкие постройки и опрокидывает стоящие на земле самолеты. В связи с этой особенностью за рубежом даже возникали проекты создания самолетов-штурмовиков, воздействующих на противника ударной волной.
Но вернемся к загадочному черенковскому излучению. Теперь общепризнанно, что излучение, открытое Черенковым, не что иное, как ударная световая волна!
Конечно, можно возразить: для образования ударной звуковой волны самолет или снаряд должен лететь быстрее звука. Значит, для образования ударной световой волны электрон должен лететь быстрее света? Но как это может быть? Ведь Эйнштейн еще восемьдесят лет тому назад понял, что ни одно тело, ни одна элементарная частица не может передвигаться со скоростью, превосходящей скорость света в пустоте.
Эта-то последняя оговорка и спасает положение.
Дело в том, что в веществе свет распространяется медленнее, чем в пустоте, а в некоторых веществах даже намного медленнее. Поэтому ничто не препятствует электрону, обладающему достаточной энергией, обогнать световую волну, бегущую в веществе. А при этом уже может образоваться ударная световая волна.
Теорию, объясняющую возникновение черенковского излучения, Тамм и Франк создали в 1937 году. Они неопровержимо доказали, что Черенков действительно открыл совершенно новый вид светового излучения. Отдавая должное вкладу своего учителя в открытие и объяснение природы этих волн, Черенков предложил назвать их излучением Вавилова — Черепкова.
Как же объяснили они увиденное Черенковым?
Когда жидкость, даже простая дистиллированная вода, облучается гамма-лучами радия, эти лучи выбивают из атомов жидкости электроны. А так как электроны — крошечные сгустки материи — очень легки, то удар кванта гамма-лучей действует на них, как удар ракетки на теннисный мяч. Вот почему электроны вылетают из атомов с колоссальными одинаково направленными скоростями.
Электрон, летящий в жидкости, сильно взаимодействует с атомами, лежащими вблизи его пути. Электроны этих атомов тоже начинают излучать. В результате в веществе возникают световые волны, которые разбегаются во все стороны от летящего электрона.
Если электрон летит медленнее света, то световые волны, исходящие от различных участков его пути, гасят друг друга, и мы не видим световых волн, так же как не видим носовую волну корабля, движущегося с очень малой скоростью. Иное дело, если электрон летит быстрее, чем скорость света в веществе. В этом случае световые волны, возбуждаемые электроном по мере его продвижения в веществе, складываются, образуя разбегающуюся в виде конуса световую волну.
Светящийся хвостик электрона, вернее, электронов — их в жидкости во время этого опыта летит множество — и увидел Черенков. Если бы свет, испускаемый электронами распределялся равномерно, как при люминесценции, вероятно, обнаружили бы не скоро. Конусообразное распределение света в направлении движения электронов — вот что привлекло внимание Черепкова, вот что надо на мысль об особой природе этого свечения, вошедшего в историю науки как излучение Вавилова — Черепкова.
Так объяснили Тамм и Франк странное на вид свечение. И их теория блестяще совпала со всеми опытами Черепкова, проделанными им за пять лет неустанного труда. Упорство Черепкова победило. Оправдались вдохновляющие слова английского писателя Оскара Уайльда: «Верь в себя, и другие в тебя поверят». Черенков был убежден в том, что стоит на пороге неведомого. Эту убежденность подтвердили математические расчеты. В новое открытие в конце концов поверили все.
Тетрадка в пять страниц
Много позже Вавилов обнаружил, что знаменитый лорд Кельвин еще в 1901 году указал на то, что атом, летящий в пустоте со сверхсветовой скоростью, должен создавать электромагнитную волну, аналогичную волнам Маха в акустике, ударным или носовым волнам, о которых упоминалось на предыдущих страницах.
В то время еще никто не знал, что ни одно материальное тело, в том числе и атом, не может лететь в пустоте со скоростью, превышающей скорость света. Теория относительности, основанная на постулате о скорости света как предельной скорости, была создана лишь четыре года спустя, а признание справедливости этого постулата пришло еще позже.